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Unit 1

1. Read the text and make a note of any useful word combination you find there.

14.1 Reversing differentiation
Compare the following two problems:
Problem A: L sinz = f(z)

Problem B: L F(z) = cosz

For Problem A we know already that
f(x) = cosx.
This provides one answer to Problem B, which is solved by
F(z) =sinzx.
Since cosx is the derivative of sinx, we say that sinx is an antiderivative of cosx (we say
an antiderivative because it is not the only one; for example, sin x4 1 is also an antiderivative).
The antidifferentiation question in Problem B can be expressed in various ways; for example,
e What must be differentiated to get cosz?
e What curves have slope equal to cosx at every point?
e Find y as a function of x if % = cos.
Finding antiderivatives is the opposite or inverse process to that of finding derivatives.
The following examples show that a function f(z) has an infinite number of antiderivatives:

there is an infinite number of functions whose derivatives are f(z). However, they are all very
simple variants on a single function.

e Example 14.1: Find y as a function of x if fl—z =2z

One solution is y = x?, because its derivative is 2z. But the derivatives of 22 +3, 22 —1/2,
and so on are also equal to 2z. In fact y = 22+ is an antiderivative of 2z for any constant

C.
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Fig. 14.1

Some of these solutions are shown in Fig. 14.1. Different choices for C' just shift the
graph bodily up or down parallel to itself. Therefore, at any particular value of x, such
as is represented by the vertical line PQR, the slopes are all the same, independently of
the value of C.

e Example 14.2: Find a collection of antiderivatives of sin 2.

We want y such that Z—Z = sin 2z. If we differentiate a cosine we get something involving
a sine, so first of all test whether y = cos 2z is close to being an antiderivative of sin 2z.
We find that % = —2sin 2z. This contains an unwanted factor (-2). It can be eliminated
by choosing instead

1
Y= ) cos2x = —5 cos 2z,
for then we have g—g = —1(—2sin 22) = sin 2z, which is right. Therefore, one antiderivative
is —1/2cos 2z, and the rest are of the form y = —3 cos2z + C (C is any constant).

Find in the text you have just read a word which:

e means "used for referring to something that you are going to say or mention next, espe-
cially a list of people or things".

e means "used when explaining why someone does something or why a situation exists".

e means "used for talking about reasons or causes".

Complete the text with the words and phrases in the box.

from this, that is to say, then, to avoid, solve, try, ﬁnd‘

e Example 14.3: ... the equation % =e3 (..., ... a collection of antiderivatives of e73%).

= —3e73*. ... the unwanted factor (-3) we should have taken

&.l&
<

LYy=€ "7 ..

.. we construct an infinite collection of antiderivatives: —ze™3* + C' (C' is any constant).



4. In the text that follows, find word combinations with the noun process.

It can be proved that the above process, of finding a particular antiderivative of a function
and adding constants, generates all possible antiderivatives for that function.

Antiderivatives of f(z)

A function F'(x) is called an antiderivative of f(z) if

d
F(x) = ().

If F(x) is any particular antiderivative of f(z), then all the antiderivatives are given by
F(x)+C, (14.1)

where C' can be any constant. (Therefore, any two antiderivatives differ by a constant).
An antiderivative of a function is also more usually called indefinite integral, and the process
of getting it is called integration. If you know the term already, it is perfectly safe to use it.

5. The following two examples show the importance in practice of including the
constant C. Study them.

e Example 14.6: A point is at x = 2 on the x axis at time t = 0, then moves with velocity
v =t —t2. Find where it is at time t = 3.

Velocity is the rate at which displacement x changes with time: v = ‘é—f.

In this case
V= — =1 —t2.
dt

Therefore x is some antiderivative of ¢t — t2. All of its antiderivatives are included in

1 1
=t -4 C
T 5 3 + C,

where C' is any constant.

To find what value C' must take in this case, we obviously have to take the starting point
into consideration: x = 2 when t = 0. To obtain the value of C, substitute these values
into our expression:

2=0-0+C.
Therefore C' = 2, so the position at any time is given by

1 1
=2 — 342
T 5 3 +

Finally, when t = 3, we have z = —

Nt
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Example 14.7: Find the equation of the curve which passes through the point (7, —1) and
whose slope is given by g—z = sin 2x.

Since the required y is an antiderivative of sin 2z, the equation of the curve must take the
form

1
Yy = —50052x+0,

where C'is some (not ’any’) constant. Since also we know that the curve passes through
the point x = 7w, y = —1, we must require

1 1
—1:—§c0527r+C:—§+C,

so C' = —%. Finally the required curve is

1 1
Y= —§C082£L'— 5

Use the following word combinations in the sentences of your own.

to take into account

the process of getting smth.
it can be proved that

to provide an answer to ...
to be equal to

that is to say

from this we construct

Read the text. Pay special attention to the conjunction given that meaning
considering the stated facts, think of its Russian equivalent. Use it in the
sentences of your own.

Example 14.8: Obtain the antiderivative of (3x — 2)3.

As in the earlier examples, we try to guess the structure of y, given that fl—z = (3z —2)3.

There is not much to go on, so try an analogy with z3; it would lead us to try something

like y = (3z — 2)%. To check this, differentiate using the chain rule with v = 3z — 2 and
4

Yy =u":

d
% = 4(3z —2)% -3 = 12(3z — 2)°.
The factor 12 is unwanted; we really needed y = %(Bx —2)%. Therefore all the antideriva-

tives are given by y = & (3z —2)* + C.



8. Read the text. Use a dictionary if necessary. Then do the exercise that follows.

Signed area generated by a graph

Figure 14.2 shows the graph of a function y = f(x) between z = a and z = b, in which we
assume that the x and y scales are the same. Divide the range as shown into N sections so that
in any section y is either positive only, or negative only.

Let Ay, A,, ... denote the geometrical areas of these segments, and A the sum of these.
Geometrical area is always positive, so Ay, As, ... are all positive numbers. Then
A=A+ Ay + A3+ ...+ Ay (14.3)

is naturally called 'the geometrical area between the curve and the z axis’.
We require a different quantity, A, called the signed area between the curve and the z axis.
This is defined by
A=Ay — Ay + A3 — ... — Apn. (14.4)

In forming A, we use the rule: if y is positive, the contribution takes a positive sign; if y is
negative, the contribution takes a negative sign. This quantity has a far more useful range
of applications than has geometrical area. For example, suppose that a point is moving on a
straight line; then the signed displacement from its starting point is equal to the signed area of
its velocity-time graph.

A, A;
Sl O ) b

dx

’—\ x x+0x b
a B 0]
R
S R

Fig. 14.3

We show how to calculate the signed area A of the graph of y = f(z) between two given
points, z = a and z = b. Let A(z) represent the signed area between a and a variable point
with coordinate x (Fig 14.3a). Increase x by a small step dx; the signed area from a to x + dz
is A(z+dx). The change in signed area, 04 = A(x +dz) — A(x) (positive or negative), is equal
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to the signed area of PQRS in Figs 14.3a and b. This is very nearly equal to the signed area
of the rectangle PQNS in Fig . 14.3b (in this case the required sign is negative) so

A= f(x)ox
which automatically takes the right sign. Therefore

0A
P f(z).
Now let dz — 0; '’ becomes '=’, and % becomes ‘C%, so that
dA
— = : 14.5
= = f) (14,5

From (14.5) A(x) must be one of the antiderivatives of f(x). To find which one, choose any
particular antiderivative and call it F'(z). Then A(z) can differ from F(x) only by a constant,
k say, so that

A(z) = F(z) + k. (14.6)

To determine the value of k, use the fact that A(x) = 0 at = a, because the starting point is
then the same as the end-point; that is to say,

Therefore, from (14.6)

or

k= —F(a), (14.7)

a known quantity, since we selected the antiderivative F'(z) of f(z) ourselves. The required
area A between a and b is given by

A= A(b) = F(b) — F(a),

by putting z = b into (14.6), with (14.7) as the value of k.
The signed area A of f(z) between area r =a and b

A=F(b) - Fla), (14.8)

where F'(x) is any antiderivative of f(x).
In practice we naturally use the simplest antiderivative, in which the C in the table is zero.
But any nonzero choice of C' will cancel out and disappear, since it will be present in both F'(a)

and F'(b).

e Example 14.11 Find the signed area of y = x* from x = —1 to x = 2. (This happens
to be the same as the geometrical area, because y is never negative.) Here a = —1 and
b = 2. Also, the simplest antiderivative of 22 is

F(z) = =2°.



Therefore, from (14.8),

There is a special notation, the square-bracket notation, which we shall use generally
from now onward.

Square-bracket notation

[F(x)]% stands for F(b) — F(a). (14.9)
Y
1
) "
_(IL b =) 2T
Fig. 14.4

e Example 14.12 Find (a) signed area, and (b) the geometrical area, between y = sinx and
the x azis from x =0 to x = 2.

(a) f(x) = sinx, so F(xz) = —cosz is an antiderivative. From (14.8) and (14.9), with
a =0 and b = 2w, the signed area A is given by

A = [—cosx]d" = —[cos z]5™ = —(cos 27 — cos 0) = 0,

as is expected from Fig. 14.4: the positive and negative sections cancel.

(b) The geometrical area A can be obtained by splitting the range into a positive section
0 to 7, and a negative section from 7 to 27 (see Fig. 14.4). The negatively signed section
m to 2m must have its sign reversed in order to give the geometrical area:

A = [geometrical area of 1st loop] + [geometrical area of 2nd loop] =
= [signed area of 1st loop] — [signed area of 2nd loop].

This is equal to

[F(2)]§ — [F(2)]7" = [~ cos z]§ — [~ cosx]2" =

= (—cosm+cos0) — (—cos2m+cosm) = (1+1)— (—-1+(-1)) =2+2=4.
9. Say it in English.
1. OmHAKO TOJIyIeHHBII pe3y/ibTaT COBCEM HEe TOT, KOTOPBI HAM OBLIT HY?KeH.

2. PaB,ZLeJII/ITe 006€e BeJIMYNHBI Ha KOHCTAHTY a. He 3&6y,ZH:>Te BBECTHU IIPOU3BOJIbHYIO KOHCTaHTY
C. HyCTb Ha4daJIbHbIE YCJIOBUA 3a/laHbI.

3. g Toro 4ToOBI MPOBEPUTH MPABUJIBHOCTH (DOPMYJIBI, BCE, UYTO HAM HYKHO CJI€IaTh, TaK
9T0 MpoAuMdEPEHITNPOBATE Oy IEHHBII Pe3yIbTaT.
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4. Ha mpakTuke B TaKOM CJIydae MbI HUCIIOJIb3YeM Topas/io OoJiee IMPOCToil Criocod peleHus.
OH B3akII09aeTCs B CJIELYIOIIEM.

5. OkasbIBaeTcs, UTO 3TO ypaBHEHUE TaKOe Ke, KaK M PACCMOTPEHHOE BHIIIIE.
6. Haiiyiure bynkmmo, KoTopas yJI0BJIETBOPSIET CIEIYIONEMY YPABHEHUIO.
7. Tenepb NMpeIIONIOKIM, YTO £ UMeEET OTPHUIATETbHOE 3HAYEHUE.

8. Byksa ¢ oznagaer "mobast koncranTa" mim "mponsBosbHag KoHCTaHTA'.
10. Solve the problems below. Use phrases from the texts you have read to help
you. Describe your solutions.

14.1 Obtain all antiderivatives of the following functions, and check their correctness by differ-
entiating your results.

(a) x°; 3a*; 22%; 3a?; 65 f(x) = 3; f(x) = 0.
(b) —327% 2272 3z~ when 2 > 0 (if in boubt, see (14.2)).
(c) w3, 3 173 x5 275,
(d) & write as 272; 25 L when 2 < 0 (see (14.2)).
1
(€) V(=) i .
1 1.3
() B 3o s
(g) em’ e—;r; 5€2a:; e 590’ 36—2:0
(h) cosx; cos3x; sin x; sin 3z.
(i) 1—3z; 1+ 22 — 32% 32t — 422 + 5.
(j) z(x+1) (expand by removing the brackets); (1+2z)(1—2z); (z+1)% (1+z)(1—1);
2 (z + 2%).
(k) “£L (turn it into the sum of two terms); Lf; (put vz = 2 and \/%E = 272, then
simplify as the sum of two terms); (I:—gl)Q

(1) e 4 e " 2¢27 _ 36351:; e%x(l + e—%m); 62%(: 6—290); eh;—i_h_

1y —4cosiz; 2 +sin2z.

(m) 2cos2z; 3sin 5 3

14.2 Find all antiderivatives of the following by trial and error, as explained in the text. Confirm
your answers by differentiation.
(a) (z+ 1) (start by trying (x + 1)*); (3z + 1)3; (3z — 8)3.
(b) (1—=)% (8 =32)%; (1 —2)3;
-2. -1 _2 . 1
(©) 2o+ 1) (1- ) s —.

(d) cos (3xz — 2) (try first sin (3z — 2)); 3sin (1 — z); 2sin (2 — 3x).

14.3 Find the antiderivatives of the following.
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(a) %Ha ﬁQ 3;’—25 51:2—4

b =

(c) el (it can be written as 1 — ﬁ)
(d) £ (compare (c)).

14.4 Use the identities cos? A = £(14-cos 2A), sin® A = (1 —cos 2A), and sin A cos A = 3 sin 24
to get rid of the squares and products in the following expressions, and in that way obtain
the antiderivatives.

a) Show that %(:vex) = e"+ze”. By rearranging the terms, show that the antiderivatives
of ze™ are e”(x — 1) + C (use the fact that e” can be written as Le”). Confirm the
result by differentiation.

(b) Differentiate z2¢*. By rearranging the terms and using the results in (a), find the

antiderivatives of z2e

14.6 Use the result (14.8) to obtain the signed area between the given graphs and the z axis.
By roughly sketching the graphs of the functions for which you obtain zero, explain this

fact.

(a) y=2,0<z <2

(b) y=z, -1 <z <1,

(c)y=-2*0<z<1;

(d) y=cosz, -7 < x < ;

(e) y=cosz—1,0 <z < 2m;

(f) y=271, —2<x < —1;

(g) y= s1n3x, 0<az<2m

(h) y = T w, 2 <z < 3 (note: 1 — x is negative over this range, so make sure you

understand Example 14.10; alternatively, write ﬁ = —ﬁ)

14.7 Obtain the geometric area between the graph and the x axis in each of the following cases.
It is necessary to treat each positive and negative section separately.

(a) y=—3,0 <z <1 (this is negative all the way);
(b) y=2% -1 <z <1;

(c)y=4—2% -1 <z <3;

(d) y=cosz, 0 <x < 2.

14.8 Find the most general function which satisfies the following equations.

. Pz _ dde dz _ dd’z ; ;
(Note: &5 = $%, 55 = 552, etc. Work in several steps, finding the next lowest

derivative in each step.)
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&z
dt?
2z
d?
d?t

dt?

&a
dt3
d’t
dt?

&a
dt3

dty
dxt

= sint;

= 0;

= cost;

= ¢ (g is a constant);

= wy (wp is constant;

UNIT 1.

this relates to the displacements y(z) of a bending beam).



Unit 2

1. Read the text and make a note of any useful word combination you find there

18.1 Differential equations and their solutions
Suppose that we have a problem in which a quantity x that we are studying depends on
time ¢; that is to say, x is a function of ¢, which we write as z(¢). From the physics and
geometry of the problem we can often obtain an indirect relation between x and y, called an
equation for x. The equation might be an ordinary algebraic equation such as x? + 2xt = 1,
but it might contain % or %, as in the equation ¢ 7 = g for a falling body, where g is the
gravitational acceleration. This is simple example of a differential equation, and we can solve
it by the methods of earlier chapters (compare problem 14.8f).
The equation
dx
i 3x
is also a differetial equation, but we do not yet know how to find an explicit solution for x in
terms of ¢. Obviously not just anything will do; if for instance we try x = ¢? it does not work,
because then = 2t, but 3x = 3t2, and these are quite different.
A clue is glven by interpreting the equation: it says that a quantity x always grows at a
rate proportional to the amount of x already present. This is a property of the exponential
function (see Section 1.10), so we might try exponential functions of ¢. In fact,

Tr =e€

solves the equation, because then % = 3¢, and this is equal to 3z, as required. However, it is

not the only solution, because

i
r = Ae3t,

where A is any constant, also solves the equation.
In general, a differential equation for x as a function of ¢ is an equation involving at least

the first derivative 4 < as well as, possibly, x and ¢ separately. Some examples are

al9(;+2]f 1d2x+d:c+ Od3x 22
dt dat?  dt ’
In such equations, t is called the independ variable and x the depend variable. An equation is
called first-order, second order and so on, according to the order of the highest derivative in it:
de d’z o4
i 52> and so on.

13
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Resistance Inductance

Fig. 18.1

Problems in science and engineering are often more easily formulated in terms of differential
equations. Suppose for example that in the RL circuit of Fig. 18.1 the switch is closed at time
t = 0, and that subsequently the voltage applied is E(t). Then the current x(t) is found by
solving the differential equation

dx
Ldt + Rz = E(t).
Here we have collected all the terms that involve z (including fl—f) on the left side and have
put the term that does not involve z, namely E(t) on the right. This is the conventional
arrangement. The term independent of x which comes on the right is then called forcing term,
the reason being obvious in this case, since E(t) drives the circuit.

The differential equation with the same left-hand side, but with a zero forcing term on the
right, plays a key role in obtaining solutions of the original equation. Such equations are called
unforced differential equations, or sometimes homogeneous equations, and are the subject of
this chapter, Also, for the present, we shall further restict ourselves to linear equations with
constant coefficients which have the form:

Linear differential equations with constant coefficients

e [irst-order:

d
d—j + cx =0 (c constant).
e Second-order:
o + bdx + 0 (b, ¢ constants)
— +b—+tcx= ¢ constants).
a2 dt ’

These are called linear because there are no squares, products, etc., involving z and its deriva-
tives. Such equations have comparatively simple characteristics. The simplest instance of all
is

dx 0

priall
It has solutions x = A, where A is any constant. There is therefore an infinity of solutions, and
we must expect this to be true in more general cases too.

A solution of a differential equation is any function x(t) which fits, or satisfies, the equation.

This is illustrated in the next two examples.
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2. Say it in English
1. BesmumHA, KOTOPYIO MBI U3y4YaeM, 3aBUCUT OT

2. BO3MOXKHO, HHAe TOBOPsI, B 00IIEM, OJIHAKO, TIOCKOJIBKY, TOTJIA, 110 CYIIECTBY, Harmpumep(2),
TaKKe

3. 0ObIYHOE ajredpanveckoe ypaBHEHHUE, TaKOe, KaK
4. mpocroii / camblil IpocToii pumep auddepeHInaaIbHOrO ypaBHEHUS
5. pacTu CO CKOPOCTBIO IPOIOPIUOHAILHOM 3HAYCHUIO X
6. 9TO He eJINHCTBEHHOE PelleHne
7. chopMmynupoBaTh B TepMUHAX JUMDMEPEHITNATBHBIX YDABHEHMI
8. HaWTH myTeM perienns auddepeHnaaIbHOr0 YpaBHEeHUsT
9. 3aBHCcHMagd repeMeHHast, ObITh HE3aBUCUMBIM OT
10. aT0 paccyKjeHre O9eBUIHO, TAK KaK

11. nmajiee MBI orpaHUYMBaeMcs YpaBHEHUSMU BHUJIA

3. Find in the text you are going to read now a word which:

e means "to check that sth is true or accurate by careful investigation"
e means "to need sth; to depend on sb / sth"

e means "to state or show that sth is definitely true or correct"

e Example 18.1 For a differential equation % + 22 = 0, verify that (a) x = €* is not a
solution, (b) x = 2e~2 is a solution.

1. Test z = e?. Then % = 2¢* and so
Ly 2x = 2¢% + 2% = 4e*.
This is not zero, so x = €' is not a solution.
2. Test x = 2. Then % = —4e¢~? and so
Ly 2p = —4e 4+ 4 = 0.

The zero value is what the equation requires, so 2e~2

! is a solution.

t

Incidentally, we can confirm in the same way that x = Ae~%, where A is any constant, is

always a solution. We have

d
d—f 2= —24e7% £ 247 = 0,

as it should be. This is the infinity of solutions we were expecting.
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4. Complete the text with the words and phrases in the box

therefore, verify, similarly, the two bracketed expressions, strightforward, not
expected to show, as required, as follows, in this way

. Example 18.2 ... that the following functions are solutions of the second-order equation
TL 4+ 4z = 0: (a) x =cos2t, (b) x =sin2t, (¢c) x = Acos2t + Bsin2t, where A and B
are any constants.

Note that 'verify’ means ’try out’: you are ... how the solutions were obtained.

1. If x = cos2t, then d = —2sin 2t, and ‘25 = —4cos?2t. ...
Cclng +4r = —4coth+4coth =0
as required.

2. ..., if x = sin2t, then
dt2 24+ 4r = —4sin2t +4sin2t =0

3. Confirmation is ..., but the underlying reason why the previous solutions can be
combined into a new solution ... is made clearer by organizing the calculation ... .

Crtdr =14 > (Acos 2t + Bsin 2t) + 4(Acos 2t 4+ Bsin 2t)

= A(W cos 2t + 4 cos 2t) + B(@ sin2t + 4sin2t) = 0

by rearranging the terms. We already know the ... are zero, so the whole expression
is zero ... .

The separation of d 5 + 4x into an 'A’ part and a 'B’ part in this way is possible only
because the equation is hnear

5. Read the text below. Explain the meaning of the word constant in which it
occurs in the text and write down all the word combinations with this noun.

Solving first-order linear unforced equations
Consider the equation

d
d_j + cx =0 (cis a fixed constant). (18.2)
If we write it in the form
dv _ (—c)x
dt ’

it can be seen to describe the variation of a quantity x(t) which decays (if ¢ is positive) or grows
(if ¢ is negative) at a rate proportional to the amount of x already present. From Section 1.10,
we know that exponential functions have this property. We shall therefore test the solutions of
the form

z(t) = Ae™ (18.3)

where A and m are unknown constants which we shall try to adjust to fit the equation. From

(18.3),

d
d—f +cx = Ame™ + cAe™ = A(m + c)e™
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This quantity must be zero for all values of ¢ in order to fit the differential equation (18.2).
Ignoring the possibility A = 0, which gives us the so-called trivial solution x(t) = 0, we must
have

m = —c,

and in that case it does not matter what value is given to A. We have therefore found a
collection of solutions x(t) = Ae~“, where A is an arbitrary constant. It can be proved that
there are no other solutions, and so we call the solutions we have found the general solution of
the equation.

The general solution of

d
d—f +cr =0
where c is a given constant, is
z(t) = Ae™, (18.4)

where A is any constant.

e Example 18.3 Find the general solution of % —4x = 0.
We will rework the theory. Look for solutions of the form z = Ae™:

d

d_f — 4z = Ame™ — 4Ae™ = Ae™ (m — 4).

This is zero for all time if m = 4, whatever the value of A. Therefore the general solution
(which includes the trivial one mentioned above) is * = Ame*, with A an arbitrary
constant.

Figure 18.2 depicts several of these solutions, corresponding to various values of the arbitrary
constant A.

Each value of A gives a different curve, and these solution curves fill the whole plane.
Also the curves do not cross, so there is one and only one curve through every point. This
corresponds to the fact that the slope Z—f has one and only one value at every point, namely
the value prescribed by the differential equation Z—f = 4x taken at the point. This is all
strong evidence that we have found all the solutions. More is said about the graphical way of
understanding differential equations in Chapters 22 and 23.

8 4 2 1 T
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e Example 18.4 Find all the solutions of 3‘% + 2z =0.

We could carry out the full calculation as in the previous example. However, if instead
we want to quote the formula, (18.4), we must first write the equation in the form

dx n 2 0
— 4+ -z =0.
a3

Therefore ¢ = 2 (not 2), and the general solution is z = Ae™3, with A any constant.

It is worth while to memorize the formula (18.4).

In practical cases we do not usually need all the solutions, but only the one which satisfies
some further condition of the proflem. Frequently the condition supplied describes the condition
prevailing at the start of the action, or at some other time, as in the following.

e Example 18.5 Find the solution o fl—f —4x =0 of which x = 2 when t = 1.

Other ways of saying this are 'find the solution curve which passes through the point
(1,2)’, or 'find a solution z(t) so that z(1) = 2.

From Example 18.3 all the possible solutions are given by

x = Ae*.

Since z = 2 when t = 1, we must have 2 = Ae*. Therefore
A2e4
and the single solution picked out is

z = (2e74)et = 2e4tD,

An extra condition of this type is called an initial condition. It describes the state of the
system at a given time. The differential equation together with its initial condition is called an
initial-value problem.

Initial-value problem, first-order equation

(a) Differential equation:

d
d_ng +cx =0
(b) Initial equation:
x =uxgat t =ty or (x(ty) = xp), with zy and t, specified. (18.5)

6. Say it in English
1. D10 coorBercTBYeT TOMY (DAKTY, 9TO ...
2. Perrenue, yromMsHyToe BbIIIe
3. B 9T0i1 cBA3M CTOUT YHOMAHYTH TOT (DAKT, UTO ...
4. Y1o0b! HAWTHU pelleHne, Hy?KHO BBIIOJHUTH BBIYUC/ICHIE, KAK B IPEIBIIYIIEM IIPUMEDE.

5. Ha pucynke n3o6pazkeHbl HEKOTOPbIE€ U3 HAllJIEHHBIX PEIICHUI.
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7. In the text that follows, find word combinations with the noun solution and
use some of them in the sentences of your own.

18.3 Solving second-order linear unforced equations
For second-order differential equations of the type (18.1b), we use a similar technique.

e Example 18.6 Find some solutions of the equation

d*x n dx 5 0
— 4+ ——2x=0.
dt?  dt
We will look first for absolutely basic solutions. Test whether there are any solutions of
. 2
the form z(t) = e™, where m is constant. Because % = me™ and L% = m?e™, we have
d*x  dx
—— 4+ — =2z =m?™ + me™ — 2™ = "™ (m® + m — 2).
dt?  dt ( )

This is zero for all time if m? +m — 2 = 0, that is if
m=1or —2.

This gives us two solutions, namely z(t) = ! and z(t) = e2.

From this basis, we can obtain more solutions. Guided by Example 18.2¢, we show that
also

x(t) = Ae' + Be ™,

where A and B are arbitrary constants, is a solution. By substituting into the equation
and sorting the terms into those with coefficient A and those with coefficient B, we obtain

d2 t d t t d2 —2t d -2t —2t
A(@e + e —2e)+B(@e + e —2e77") =0,

2

because e and e~ 2" are known already to be solutions; so both of the bracketed expressions

are zero.

This is the principle, but consider now the general case

d*x dx
YA p—
gz T =0

Look for solutions of the form z = ™. Then

2
CcilT;U +bfl—£§ +cx = e™(m? + bm + c).

This will be zero for all £, as required by the differential equation, if

m? +bm +c =0, (18.6)
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which is called the characteristic equation. Being quadratic, it may have two real solutions,
exactly one real solution, or two complex solutions depending on the coefficients. Consider the
real cases first:
Roots my and my of the characteristic equation are real and different
In this case,
2(t) = ™" and x(t) = ™'

are solutions of the differential equation, and from these we can construct a whole family of
solutions
x(t) = Ae™' 4+ Be™,

where A and B are arbitrary. It can be proved that there are no more solutions: this gives a
basis for the general solution.
Characteristic equation: unequal real roots

d? d
d_tf + bd—f + cx = 0; roots m; and my of
m>+bm+c=0
real and different.
Basis of solutions:
emlt, BMQt.
General solution:
Ae™' 4+ Be™*' (A, B arbitrary). (18.7)
. . d?z dzx _

e Example 18.7 Find the general solution of 295 — %% —x = 0.

To correspond with the standard form, (18.7), we should have to write the equation in
the form 55733 — %z—f — %x = 0, but there is no need to do this if we directly test for solutions
of the form x = ™. The characteristic equation then takes the form 2m? —m — 1 = 0,
or (2m +1)(m — 1) = 0, so that m; = —%, my = 1. Therefore the basis for the general
solution in the solution pair (e72', '), and the general solution is z(t) = Ae~2' + Be!, A
and B arbitrary.

Roots my and my of the characteristic equation are equal

Suppose that m; = my = myg, say. We have then only one function for our basis instead of
two, and we might expect the general solution to be Ae™ot. However, all we know is that there
is essentially only one solution of the form ¢™ (ignoring simple multiples of ¢™), but we shall
see in the next example that there is also a solution which is not of this form, namely

x(t) = te™",

We might therefore think there will be no end of it: if €™ is a solution, then why not
t2e™ot or some function of great complication? However, it can be proved that every second-
order linear equation has exactly the linearly independent solutions (i.e. they are not just
multiples of each other); also that these form a basis of solutions: we do not need any others
to construct the most general solution. Formally:

Basis and general solution of
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>z dx
— 4+ b— =0
az a e
(a) There exist two linearly independent solutions.
(b) If u(t) and v(t) are any two linearly independent solutions, these form basis for general

solution; that is to say, the general solution is given by

x(t) = Au(t) + Bo(t),

where A and B are arbitrary constants.

: : d*z dx _
e Example 18.8 Find the general solution of G5 + 4% + 4x = 0.

:emt‘

The charactiristic equation, formed by substituting x(t) is

m? 4+ 4m+4=(m+2)?=0,

and the only solution of m that we find is m = —2. It corresponds to the basic solution
—2t
e .

The theorem (18.9) guarantees there is another independent solution and it does not
matter how we find it. Test the truth of (18.8), which proposes an independent solution
having the form

x(t) = te .
Then
Cji—f = (1—2t)e
and
% = (—4 +4t)e .
Therefore 2 i
o 4§ + 4z = [(—4 + 4t) + 4(1 — 2t) + 4t]e™™,

which is zero, so x(t) = te~? is a second solution , and it is independent of the first. By
(18.9), the solution basis is therefore

(7, te™),
and the general solution is x(t) = Ae™?* + Bte ™, A and B arbitrary.

The second solution always takes the same form (see Problem 18.8):

Characteristic equation: coincedent roots

If ‘2273” + bi—f + cx = 0, in which b* — 4¢ = 4 (for coincedent roots), and myg is the single
solution of the characteristic equation m? + bm + ¢ = 0, then the solution basis is (e™!, te™o?)
and the general solution is z(t) = Ae™" 4+ Be™" (A and B are arbitrary constants).



22 UNIT 2.

8. The verb substitute means "to take place of sb/sth else; to use sb/sth instead
of sb/sth else." We can use it and its derivatives as in the examples below.
Study them.

1. This axiom claims that equivalent descriptions (e.g., "a" and "a'") can be substituted for
one another.

2. We substitute knowledge for reasoning.

3. In particular, a difference scheme can be examined for stability by substituting into it
perturbed values of the solution.

4. This alloy is used as a substitute for silver.

Translate into English

1. Toxcrasasia (1) B ypaBHeHHe (2), MbI TOJIyYaeM ...

2. CropocTh MOXkKeT ObITh HaifijieHa 10/cTaHoBKOi (2.3) B (2.4).

3. B coorBercrBun c ycjaoBuEM 3a/ia9M 3THU BEJIMYIMHBI B3aUMO3aMEHACMDBI.

9. Try to recollect how these phrases are used in the text you have just read.

There is essentially only one solution of ...; we can construct a whole family of solutions; but
there is no need to do this; being quadratic; guided by Example 18.2¢; it can be proved that ...;
by substituting into ...; to correspond with the standard form; as required by the differential
equation; it corresponds to the basic solution; by substituting z(t) = ™ it is independent of

10. Fill in the missing prepositions.

18.4 Complex roots of the characteristic equation
If b? < 4c, the roots m; and ms of the characteristic equation m? 4 bm+ ¢ for the differential

equation % + bfli—f + cx = 0 are complex. Since they are roots ... a quadratic equation, they

must be complex conjugate, so put
my =a+1if, my=a—if,
where o and [ are real numbers. The corresponding functions

atiB)t g g pla=if)t

are genuine complex solutions, so we call (18.11) a complex basis ... solutions of the differential
equation. If we are interested ... complex as well as real solutions, then we can allow the
arbitrary constants A and B to be complex as well, in an all-inclusive general complex solution

z(t) = Ael@tPt L Bela—idlt,

Suppose, however, that we want the general solution to consist only ... real functions, then
a basis for a real solutions can be got from (18.11) ... the following way. By (6.8)

e(aHB)t = @atewt = e cos ﬂt -+ ie™ sin 615-
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This function solves the differential equation, so its real and imaginary parts separately must
also solve it, Therefore
(€™ cos Bt, e sin Bt)

is a real basis ... the general (real) solution
z(t) = Ae™ cos Bt + Be™ sin Bt (18.12)

where A and B are arbitrary (but real, of course). The second complex solution, e~ has
the basis, (e* cos ft, —e® sin ft) which leads ... the same family of solutions, so we get nothing
new ... considering it.

Equation (18.12) can be written ... a different form. Using the identity (1.19), we have

Acos 5t + Bsin ft = Acos St + ¢,
where C' and ¢ are constants related ... A and B. Therefore (18.12) can be written
z(t) = Ce® cos Bt + ¢.

Since A and B are arbitrary, so are C' and ¢.

11. Complete the text with the word combinations in the box.

the real solutions, the general solution, the complex solution basis

e Example 18.9 Find the general solution of

2

xT
w+4x20.

The characteristic equation is m? +4 = 0. Its solutions are m = £2i. Therefore ... is
(e?* e~%t). But
e* = cos 2t + i sin 2t,

and the real and imaginary parts give a basis for ...:
(cos 2t, sin 2t).

Therefore ... is
x(t) = Acos2t + Bsin2t (A, B arbitrary).

12. Give the English equivalents of the Russian words and phrases in brackets:

e Example 18.10 (Hatidume obwiee pewenue caedyrousezo ypasHeHuA)

d?x dx
— +2— 4+ 220 =0.
az T T

Setting = €™ (maer xapakTepucruueckoe ypasuenue) m? + 2m + 2 = 0, so that m =

—1 4 4. Therefore

(=14i)t (—1—i)t
(e € )

Y
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is a basis for complex solutions. But
eIt — et (cost 4 isint),
(rze meficTBUTELHON U MHUMOMN YacTSIMU SIBJISIFOTCH )
—t —t .
e cost,e "sint.
(Ouu dbopmupyior ocaony) for the real solutions. The general solution is

z(t) = Ae ' cost + Be 'sint.

If we chose instead to take the real and imaginary parts of e(='+9* (b1 6b1 TOMTYaHIIH)
(e7tcost,—e tsint) (B kauecrBe Gasuca). The minus sign will be absorbed into the arbi-
trary constant B: (HEKakoe HOBOe peIlleHNe He BO3HUKAET).

13. Go on reading the text and make notes of any useful word combination you
find there.

The general solution method can be summed up as follows:

Characteristic equation: complex roots

657;6 + b‘fl—f + cx = 0, when m? + bm + ¢ has complex roots my,my = a + i3 (i.e. b* < 4c).

Complex basis: el@t#)t gla=ib)t,

Real basis: e® cos 3t, e* sin f3t.

General solution:

(a)

x(t) = Ae™ cos Bt + Be™ sin Bt

(A and B arbitrary);

or

(b)

z(t) = Ae® cos Bt + ¢ (18.13)

(C and ¢ arbitrary).

A very important case is when b = 0 and ¢ > 0, illustrated by Example 18.9. In that case,
a = 0. In conventional notation, putting ¢ = w?, we obtain the following result:

Characteristic equation: special case

.

Characteristic equation: m? + w? = 0; m1, m2 = +iw.

Complex basis: e, e~

Real basis: coswt, sinwt.

General solution":

(a)

x(t) = Acoswt + Bsinwt,

z(t) = C cos (wt + ¢) (18.14)
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In the special case (18.14), the alternative solution form
z(t) = C cos (wt + ¢)

shows that the solutions oscillate regularly, swinging above and below the ¢ axis to an extent
governed by the amplitude C. In the general case (18.13),

z(t) = Ce® cos (Bt + ¢),

the solutions oscillate, but the amplitude is governed by the factor Ce®. If « is positive, the
oscillation constantly grows; if « is negative, it dies away to zero. This is fully discussed in
Chapter 20, but Fig. 18.3 shows a particular case where « is negative.

—0.2¢

— — — Graph x =4e

Fig. 18.3

The damped unforced linear oscillator is the simplest linear model of an oscillating mechan-
ical or electrical system which has a small amount of friction or some other form of energy-loss
mechanism (see Chapter 20 for a full discussion). In a customary notation the equation is

d*x dx
— 4 2%k— 4wl =0.
gz T T =l

The term 2kfl—f expresses the energy-absorbing property. Assume
k< w?
The characteristic equation is m? + 2km + w? = 0, so that
m=—k+ (k*—w?)z = —k £ i(w? — k)2,

since k? < w?. From (18.13), @ = —k and 3 = (w* — k2)2, so finally:
Damped Linear Oscillator
d*z dv 5 o
ﬁ—l—%‘ajtw x = 0 where k* < w
General solutions:
(a) 1
z(t) = Ae " cos [(w? — k*)2t + @)
(A and B arbitrary constants); or
(b) 1
x(t) = Ce ¥ cos (w? — k*)2t + ¢ (18.15)
(C and ¢ arbitrary).
18.5 Initial conditions for second-order equations
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b
(@) (b)
X
X
P & P
Slope given
e} t e} to t
Fig. 18.4

The general solution of a second-order differential equation involves two arbitrary constants,
and the solutions are therefore an order of magnitude more numerous than in the first-order
case. Unlike the first-order case, the solution curves may cross — in fact, there is an infinite
number of solution curves through any point on the (z,t) plane, as indicated in Fug. 18.4a.

To pick out a particular solution, we need to determine the two arbitrary constants. Two
pieces of information are necessary. These may consist of two initial conditions, conditions
which define the state of the system at some starting time ty: the value of x(t) and the slope
‘fi—f at t =ty are given (see Fig. 18.4b). For example, the equation ZQT? + wiz = 0 describes the
oscillations of a particle on a spring; the initial conditions tell us its position and velocity (i.e.
its state) when it starts off. We then have an initial-value problem:

Initial-value problem

(a) Equation

d*x dx
pe + ba +cr =0,
(b) Initial conditions:

= and _SU = tt=1
T T T1 a
0 It 1 0>

which may be expressed alternatively as

SL’(to) = T, Jll(to) =T,
where ¢ and x, are given.

e Example 18.11 Find the solution of ‘57? + 4z = 0 for which x = 1 and ‘2—‘? =2att=0
(i.e. xz(0) =1, 2/(0) = 2).
First we need all the solutions. From Example 18.9, these are x(t) = Acosat + Bsin 2t,
where A and B may take any values. Since x =1 at t = 0,

1=A40, s0 A=1.

For the other condition, we first need 2’(t) in general:

2/ (t) = —2Asin 2t + 2B cos 2t.

At t =0, we are given that 2/(0) = 2, so the last equation becomes

2=0+2b, or B=1.

The required solution is therefore x(t) = cos 2t + sin 2¢.



27

14. Use the words and phrases from what you have read to solve the following
problems.

Problems

18.1 Say which of the following equations are linear, unforced, with constant coefficients (i.e.
can be rearranged to conform with (18.1a)),

' = 3t;
1

T = 5t

18.2 Write down all the solutions of the following equatons. Check one or two of them by
substitution into the differential equation.

18.3 Solve the following initial-value problems.

¥ +2r=0,2r=3whent=0;
b

(a)

(b) 3z’ —x =0,z =1 when t = 1;
(¢) ¥ =2y =0,y =2 when z = —3;
)
)

(d) 2+ 2 =0, z(—1) = 10;
(e) 2y =3y =0, y(0) =1,
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18.4

18.5

18.6

18.7

UNIT 2.

(f) Find the curve whose slope at any point (z,y) is equal to 5z, and which passes
through the point (1, —2).

Suppose that the generator in Fig 18.1 is short-circuited and cut out at the moment when
the current in the circuit is Iy. Find an expression for the current subsequently. Show
that the ratio % provides a measure of the time it takes for the current to die away.

A radioactive element disintegrates at a rate proportional to the amount of the original
element still remaining. Show that if A(t) represents the activity of the element at time
t, then

dA

where k is a positive constant.

(a) Solve the initial-value problem for A if A = Ay (given) at time ¢ = 0.

(b) The time taken for activity to drop to half of if the starting value is called the half-life
period. For uranium-232; it is found that 17.5% has decayed after 20 years. Show
that its half-life period is about 72 years.

Once upon a time, rabbits in Elysium reached maturity instantly and bred with a birthrate
of 20 rabbits per year per couple. No rabbit ever died. At the start of the experiment
Zeus released 50 male and 50 female rabbits.

By treating the number of rabbits as a continuously varying quantity and considering the
number born in a short time ¢, construct a differential equation and then an initial-value
problem for R(t), the rabbit population. Find how many rabbits there were at the end of
Year 4.

Appaled by this result and assisted by Pluto, Zeus launched another similar experiment,
in which any rabbit was allowed to live one year only. Construct the differential equation
for the population. Did this alleviate the situation appreciably?

Obtain all solutions of the following equations. (The characteristic equations all have real
roots, not nesessarily distinct.)

(b) 2" + 2’ — 2z = 0;
(c¢) 2" —x=0;

(d) 2" — 4z = 0;

(e) 3z" — %x =0;

(f

2 422 —x =0;
2" — 22 — 2z = 0;
20" + 22’ —x = 0;
3" — 1’ —2x =0;

2" 4+ 4x' 4+ 4x = 0;

)
)
)
)
)
) 2" —9x = 0;
)
)
)
)
)
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(1) 2”4 62" + 92 = 0;
(m) 42" + 42’ + 2 = 0;
(n) 2” =0.
18.8 Verify that, when the characteristic equation corresponding to z” + bz’ + cx = 0 has

coincedent roots m; = my = my, say, then the function x(t) = t™' provides a second
solution for the basis of the general solution. (For coincedent roots, b? = 4c.)

18.9 Solve the following initial-value problems.

(a) 2" —4x =0, z(0) =1, 2/(0) = 0;

(b) 2" + 2’ —2x =0, z(0) =0, 2/(0) = 2;
(c) ¥' =4y +4Y =0, y(0) = 0, y'(0) = -1
(d) v +2y +y=0,y(1)=0
(e) 2" =92 =0, z(1) =1, 2/(1
(f) 2" —4x =0, 2(1) =1, 2/(1

C

18.10 Obtain all the solutions of the following equations. (The roots of the characteristic equa-
tions are complex.)

(a
(b) 2" + 9z = 0;

4+ =0;

) x

)

(c) "+ 3o =0;

(d) 2"+ wiz = 0;

(e) 2" + 22" + 2z = 0;
(f) ¥ =2y +2y = 0;
(&) v'+y +y=0;
(h) 22" + 22" + 2 =0;
(i) 32" + 42’ + 22 = 0;
(j) 32" —4a’ + 2z = 0.

18.11 Solve the following initial-value problems.

&\
_I_
(S
oN
8
|
=
2
N
I
8
8
—
N
|
=

(Use the A, B form: finding the constant C' and ¢ in (18.14b) for an initial-value problem
can be comparatively difficult.)
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18.12

18.13

18.14

18.15

18.16

18.17

18.18

UNIT 2.

The approximate equation for small swings of a pendulum is

d26 _

Gz +90=0

where 6 is the inclination from the vertical (in radians), [ is the length, and g is the

gravitational acceleration. The pendulum is held still at an angle «, and is then passively
released. Find the subsequent motion.

The pendulum in Problem 18.12 is hanging at rest; then the bob is given a small velocity
v in the direction of # increasing. Find the subsequent motion.

If there is a little friction in the pendulum of Problem 18.12, the equation of motion takes
the form

d20 do _
W—FKE-F%Q—O,

where K is an additional positive constant which takes account of the friction (assumed
to be proportional to the angular velocity). In a particular case (SI unit), g = 9.7, [ = 20,
K = 0.066. The pendulum is at rest at first, hanging freely. It is then pushed so as to
give the bob a velocity of 1 metre per second. Find the subsequent motion.

Consider the third-order differential equation
P _
s—y=0.

Proceed by analogy with the method of Section 18.3 by substituting y = €™*, and obtain-
ing a characteristic equation for m (a cubic equation), find three distinct basic solutions of
this type. By intoducing arbitrary constants A, B, C, find as wide a variety of solutions
as you can (in fact, this is the general solution).

By proceeding as in Problem 18.15, find a wide variety of solutions of the equation
% +y=0.

By proceeding with the equation

W y=0

as in Problem 18.15, obtain the collection of solutions
y(z) = Ae® + Be™* + C'cosz + Dsin,

where A, B, C, D are arbitrary constants.

A tapered concrete column of height H metres is to support a statue of mass M (i.e.
weight Mg force units, where ¢ is the gravitational acceleration) at the top. Pressure
(force per unit area) may not exceed P. Show that the most economical construction for
the column is for its cross-sectional area A(y), where y is distance above the ground, to
satisfy the equation

Aly) =22 + &2 fyH A(u)du,

where p is the density of concrete. By differentiating this expression, obtain a differential
equation for A(y), and an initial condition for the equation, and solve it.
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