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The present book is technique-orientied. It explains how large classes of problems
may be attacked, and the problems themselves are much more like the exercises found
in texts.

The book is divided into four parts: Algebraic Identities and Equations; Algebraic
Inequalities; Number Theory; and Hints and Answers. Each chapter presents an assort-
ment of techniques for dealing with the problems in that area.

Chapter 1 discusses finite sums and combinatorial identities. As might be suspected,
for many such sums the imaginative use of the binominal theorem is sufficient to prove
the formula in question. One unusual aspect of this chapter is the attention devoted to
sums of the form

S(q, n) = P (1)q + P (2)q2 + P (3)q3 + . . .+ P (n)qn,

where P (x) is a polynomial of degree m. The authors state (without proof) a valuable
transformation theorem: if q 6= 1 is real, then there exists a polynomial Q(x) of degree
m and a real number d such that

S(q, n) = d+Q(n)qn.

The authors show how the polynomial Q may be found by the method of undetermined
coefficients.

There is a valuable discussion of polynomials and their properties. One common
practice in proving an identity is to show the quantity in question satisfies a polynomial
equation with one or more known roots, and to rule out the presence of the other roots.
For instance, to prove

3
√

3
√

21 + 8− 3
√

3
√

21− 8 = 1,

denote the left hand side by A. Elementary algebra gives

A3 + 15A− 16 = 0.

Thus A is a zero of the polynomial F (x) = x3 + 15x − 16. x = 1 is also a zero of this
polynomial. We find F (x)/(x− 1) = x2 + x+ 16, a polynomial which has only complex
roots. Thus A = 1, as required.
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The discussion of symmetric polynomials is unusual. The following result, which has
generalizations to more than two variables, is invaluable: for an arbitrary polynomial
F (x1, x2) symmetric in the variables x1 and x2 there exists a unique polynomial
H(y1, y2) such that

F (x1, x2) = H(σ1, σ2)

σ1 = x1 + x2, σ2 = x1x2

(The proof of this and its extensions is in van der Waerden’s algebra book.) The authors
give a table expressing powers xn1 + xn2 in terms of σ1 and σ2 for n = 1, 2, . . . , 5, and
a similar table for the case of three variables. Symmetric functions are very useful in
solving simultaneous nonlinear algebraic equations when the equations are symmetric in
the variables. As an example, consider the simultaneous equations:

x51 + x52 = 464

x1 + x2 = 4.

One can eliminate one of the variables, but then one is faced with the problem of solving
a quatric equation. Rewrite the equations using symmetric functions:

σ51 − 5σ31σ2 + 5σ1σ
2
2 = 464

σ1 = 4,

This leads rapidly to the solutions x1 = 2±
√

2, x2 = 2∓
√

2. (It turns out that MAPLE
can solve the original equations, but it is not difficult to devise similar equations solvable
this way which will cripple computer algebra systems.)

Section 6 of this Chapter deals with the solution of irrational algebraic equations, and
introduces a variety of techniques. A typical example of the arcane equations considered
here is

3
√
x+ 1 + 3

√
x+ 2 + 3

√
x+ 3 = 1.

As might be expected, computer algebra systems fail on these sorts of equations.
Chapter 2, Algebraic Inequalities, is one of the most illuminating studies of the

subject. Again, symmetry becomes a powerful tool. If one is attempting to show that

f(x1, x2, . . . , xn) > 0

and f is symmetric in all its variables, then it is no loss of generality to assume x1 ≥
x2 ≥ . . . ≥ xn. This assumption can have a great efficacy. For example, suppose we
wish to show that

(a+ b+ c)100 < 3100(a100 + b100 + c100)

for a, b, c positive. Assume a ≥ b ≥ c. We get (a + b + c)100 ≤ (3a)100 < 3100(a100 +
b100 + c100).

The same technique will work to prove that

a(a− b)(a− c) + b(b− c)(b− a) + c(c− a)(c− b) ≥ 0
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for positive a, b, c, since the left-hand side above may be written

a(a− b)(a− c) + (c− b)[c(c− a)− b(b− a)],

and the assumption that 0 < a ≤ b ≤ c guarantees that both the term in brackets and
the first term are positive.

As an exercise, the authors ask the reader to demonstrate an intriguing homogeneous
nonnegative lower bound for the difference between the arithmetic and the geometric
mean:

a+ b

2
−
√
ab ≥ (a− b)2(a+ 3b)(b+ 3a)

8(a+ b)(a2 + 6ab+ b2)
.

Inequalities between means and generalizations of Cauchy’s inequality receive a sound
treatment also.

The third chapter, Number Theory, is self-contained, with a treatment of basic con-
septs such as divisibility, the Euclidean algorithm, least common multiple and greatest
common divisor, prime numbers, primality, Euler’s φ-function. The number of results
that may be proved using very elementary techniques is apparently boundless. Here are
just a few of them:

i) Any prime number of the form 22n + 1 cannot be expressed as a difference of fifth
powers of two natural numbers.

ii) Let a, b, and
√
a+
√
b be positive rational. Then

√
a and

√
b are rational.

iii) The number 260 + 730 is divisible by 13.
Congruences receive a thorough treatment, including systems of congruences and

nonlinear congruences. The discussion of diophantine equations is extensive and system-
atic, and the equations treated include many strange nonlinear diophantine equations,
for instance

1 + x+ x2 + x3 = 2y.

(SOLUTIONS: x = 1, y = 2, or x = 0, y = 0). The chapter closes with a discussion of the
factorizability of polynomials and a statement of the Eisenstein irreducibility criterion.

The fourth chapter has the solutions for the exercises. Sometimes these are only
sketched, which is appropriate.
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