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Unit 1

Reading

I. Pre-reading questions:

1. Why do they say that mathematics is a language?
2. Have you any idea of the distributive axiom of algebra?

I1. Read the text and see whether your points of view coincide with
those expressed in the text. Make a list of mathematical terms. Consult
your dictionary if necessary.

Text

We begin our mathematical discussion with a review of some of the
basic notions of algebra. However, because we want to be very careful
about the ideas involved, we shall not be able to do very much with
algebra in this section. We shall instead become concerned, but in not
too neurotic a fashion, with the language of mathematics. It has been
said that mathematics is a language; this contention is a little difficult
to support if we accept any of the ordinary descriptions of language.
However, it is true that there is a standard sort of terminology in
mathematics that is much more concise and much briefer than the
garden variety of English. All of mathematics can be done without
using this shorthand notation, but its incredible usefulness makes it,
practically speaking, a necessity.

The notions of number, addition, and multiplication are undefined.
One of the axioms of algebra, called the distributive axiom, is usually
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English for Students of Mathematics and Mechanics. Part II.

stated:

z(y +2) = zy + z2. (1)
Let us be very certain that we understand just what is meant by this
statement; in fact, let us discuss briefly what some refer to as the ‘-
cessive z-cresence of x's’ involved in algebra. The proposition which is
stated in (1) certainly does not require this x — y — z sort of language;
the proposition can be stated: for any three numbers, the product of
the first with the sum of the second and third is equal to the sum
of the products of the first with the second and the first with the
third. Of course, since we have all studied some algebra, the statement
(1) seems considerably simpler than the translation into vernacular
which we have just given. And this is one of the points we want to
emphasize: the mathematical language is not only shorter, it is easier
to comprehend.

We shall not usually abbreviate our statements to quite the extent
that (1) is abbreviated. We shall usually include the qualification that
is supposed to be understood in (1), and we shall write

For all numbers z, y, and z

z(y +2) = Yy + T2, (2)

Instead of ‘for all’ we may frequently use ‘for every’, or we may write
‘for each number x, each y, and each z’. These several different ex-
pressions are supposed to mean the same thing. What we are really
asserting is that if, in the expression ‘z(y + z) = xy + z2’, we replace
‘¢’, ‘y’, and ‘2’ by numerals, then the resulting statement is always
correct.

ITII. Comprehension tasks.

1. State the proposition given in the text (line 16) without using the
signs and symbols of mathematics.

2. Comment on this statement: The mathematical language is not
only shorter, it is easier to comprehend.

IV. What do the words in italics refer to? Check against the text.

1. ... but its incredible usefulness makes it a necessity. (line 11)
2. And this is one of the points we want to emphasize. (line 26)
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3. ... it is easier to comprehend. (line 27)
4. These several different expressions are supposed to mean the same
thing. (line 35)

Vocabulary

V. Give the Russian equivalents of the following expressions:

a review of some of the basic notions of algebra; to be careful about;
the ideas involved; to do very much with algebra; we shall instead
become concerned with ...; it is true; the garden variety of English;
practically speaking; let us be very certain that ...; what some refer to
as ...; involved in algebra; to quite the extent; instead of.

V1. Join these notes with prepositions to make sentences. Then check
against the text.

1. Because we want to be very careful — the ideas involved, we shall
not be able to do very much — algebra in this section.

2. It is true that there is a standard sort — terminology — mathe-
matics.

3. One — the axioms — algebra is usually stated:...

4. Let us be very certain that we understand what is meant — this
statement.

5. We begin our mathematical discussion — a review — some — the
basic notions — algebra.

6. We shall instead become concerned — the language — mathema-
tics.

7. All — mathematics can be done — using this shorthand notation.
8. Let us discuss briefly what some refer — as the ‘z-cresence of z's’
involved — algebra.

VII. Suggest meanings for some and any in these statements.

1. We begin our mathematical discussion with a review of some of the
basic notions of algebra.
2. We accept any of the ordinary descriptions of language.
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3. Let us discuss briefly what some refer to as the ‘z-cessive z-cresence
of #'s’ involved in algebra.

4. For any three numbers the product of the first with the sum of the
second and third is equal to the sum of the products of the first with
the second and the first with the third.

5. We have all studied some algebra.

VIII. In the following sentences pay attention to the verbs make and
do.

1. We shall not be able to do very much with algebra in this section.
2. All the mathematics can be done without using this shorthand
notation.
3. Its incredible usefulness makes it a necessity.
4. The definition of ‘gizmo’ is made in terms with which we are already
familiar.
5. It is a little difficult to regard axioms as ‘self-evident truths’, as has
sometimes been done historically.
Note: These two verbs have similar meanings, and sometimes it
can be difficult to know which one to use.
Do is usually used when we are talking about work and it often
means ‘be engaged in an activity’.
Make often expresses the idea of creation or construction.
But there are exceptions to these rules. We often use do and make
in fixed phrases, where they go with particular nouns.
Try to remember some of the make/do+noun combinations. Then
write sentences using these phrases:
do +: (me) a favour, harm, the housework, a lesson,
the shopping, one’s best, homework.
make +: an agreement, a demand, a mess, a mistake, a
promise, a proposal, an attempt, progress, an
impression, an appointment.

Grammar

IX. Rewrite these sentences in the Passive.

1. The language of mathematics will concern us.
2. We can do mathematics without using this shorthand notation.
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3. We call this axiom of algebra a distributive axiom.
4. We understand what we mean by this statement.
5. We can state this proposition without this z —y — z sort of language.

X. Supply comparative or superlative forms.

1. There is a standard sort of terminology in mathematics that is much
(concise) and much (brief) than the garden variety of English.

2. ... the statement seems considerably (simple) than the translation ...
3. ... the mathematical language is not only (short), it is (easy) to
comprehend.

4. Tt is worth while to examine the notion of definition a little (closely).

XI. Rewrite these sentences using the Complex Subject construction.

1. It has been said that mathematics is a language.

2. It is certain that we understand ... .

3. It seems that the statement is considerably simpler.

4. We suppose that this qualification is understood.

5. It is supposed that these several different expressions mean the
same thing.

XII. Combine modals and their equivalents (should, can,may, must,
have to, be able to) with the verbs in brackets.

1. We shall not — (to do) very much with algebra in this section.

2. All of mathematics — (to do) without using this shorthand notation.
3. The proposition — (to state) :...

4. Instead of ‘for all’ we — frequently (to use) ‘for every’, or we — (to
write) ‘for each number z, each y and each z’.

5. There is another important fact about this mathematical language
which — (to notice).

6. Our mathematical language has the curious property that the letters
which occur — (to vary) almost at random.

7. One object — (to have) many names, and we — (to use) the names
interchangeably.

8. Anything that — (to say) about 4 — (to say) with the same amount
of truth about IV.
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9. In each mathematical system there — (to be) undefined terms.
10. We were going to describe a mathematical theory in a very careful
way, so we — (to define) every single term.

XIII. Use the Present Perfect (Active or Passive) of the verbs in brack-
ets.

1. It (to say) that mathematics is a language.

2. Since we (to study) some algebra, the statement seems considerably
simpler than the translation into vernacular which we just (to give).
3. Many students of geometry (to relieve) to discover that it is never
necessary either to understand or to use this cryptic definition.

4. We (to run) across the word ‘gizmo’ and we (to look) in a dictionary
to find its meaning.

5. This term (not to define) yet.

6. This field of knowledge (to advance) a great deal since the beginning
of the 20th century.

XIV. Complete the sentences with proper forms of the words in brack-
ets.

1. Let (we, to be) very certain that we understand just what is meant
by this statement.

2. The professor made (I, to redo) my report because he wasn’t satis-
fied with it.

3. The teacher usually let (we, to consult) the dictionary while trans-
lating a text.

4. Don’t let (he, to know) that we have finished the experiment.

5. The doctor made (she, to stay) in bed.

6. Let (we, to imagine) the situation.

7. Let (we, to suppose) that we are going to describe a mathematical
theory in a very careful way.

8. Let (we, to consider) the very first definition.

10
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XV. Write in the Past Tense forms and the Past Participles of the
following irreqular verbs.

Infinitive Past Tense | Past Participle
to begin

to write

to do

to become

to have

to be

to make

to speak

to understand
to mean

to let

to give

XVI. Complete the sentences with ing-forms or Past Participles
of the verbs in parentheses.

1. We want to be very careful about the ideas (to involve).

2. We shall become (to concern) with the language of mathematics.
3. All of mathematics can be done without (to use) this shorthand
notation.

4. One of the axioms of algebra, (to call) the distributive axiom, is
usually stated: ...

5. The proposition (to state) here doesn’t require this sort of language.
6. What we are really (to assert) is that if in this expression we replace
x, y and z by numerals, then the (to result) statement is always correct.
7. There is a number which when (to add) to 2 yields 5.

8. There is one more question of meaning which we would like to
discuss before (to end) this linguistic introspection.

9. The axioms tell us the nature of the undefined objects by (to state)
relations between them.

11
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XVII. Make the verbs in parentheses either active or passive.

1. This contention is a little difficult to support if we (to accept) any
of the ordinary descriptions of language.

2. The proposition can (to state) in the following way.

3. We shall not (to abbreviate) our statements to quite the extent that
this one (to abbreviate).

4. We usually (to include) the qualification that (to suppose) (to un-
derstand).

5. These several different expressions (to suppose) (to mean) the same
thing.

6. There is another important fact about this mathematical language
which should (to notice).

7. The letters that (to use) in a statement of this sort are inconse-
quential.

8. Our mathematical language has the curious property that the letters
which (to occur) can (to vary) almost at random.

Writing

XVIIIL. 1. Make a list of three to five word-combinations which you
think best characterize the language of mathematics. 2. Compare your
list with those of your classmates. Do you agree with what is on their
lists? Why or why not? 3. Write a paragraph describing the language
of mathematics. Use your own words as far as possible.

Supplementary Texts

Text 1

It is worth while to examine the notion of definition a little more
closely. Let us imagine this situation. We have run across the word
‘gizmo’ and we look in a dictionary to find its meaning. In the dic-
tionary we find a list of synonyms — say, ‘frazimer’, ‘whatsis’, and
‘sicklebob’ — and it turns out that every one of these is unfamiliar.
We then look up the word ‘frazimer’, and find that ‘whatsis’, ‘sick-
lebob’, and ‘gizmo’ are listed as synonyms. Continuing, we look for
‘whatsis’ and then ‘sicklebob’. But the same list of words reappears.
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Quite clearly, there is no way for us to discover the meaning of the
word ‘gizmo’ unless the definition of ‘gizmo’ is made in terms with
which we are already familiar.

Now let us suppose that we are going to describe a mathematical
theory in a very careful way, and, in particular, suppose that we want
to define every single term. (This is precisely, what Euclid attempted
in his treatment of geometry.) Let us consider the very first definition;
perhaps it reads ‘A gizmo is a ...". Then we may ask: In terms of what
is the gizmo to be defined? If this is the very first definition, with what
sort of thing can we fill in the blank in the definitional statement: ‘A
gizmo is ...”7 It is clearly impossible to manage a definition without
using some term, and if this is the first definition, then that term has
not been defined!

Text 2

In each mathematical system there must be undefined terms. This
fact need not cause us excessive anguish, no more than our inability
to comprehend the notion of ‘that which is without breadth’ causes
difficulty in plane geometry. The only things we needed to know about
lines were asserted for us in the axioms of geometry.

It is a little difficult to regard axioms as ‘self-evident truths’, as has
sometimes been done historically, because they are statements about
objects which are themselves undefined. Intuitively, the axioms tell us
the nature of the undefined objects by stating relations between them,
and we use the axioms to prove, by means of reasoning, mathematical
theorems. It is perfectly clear that we must have axioms, for if we
start with undefined terms and have no axioms we have absolutely no
way to begin to prove theorems.

Text 3

There is another important fact about the mathematical language
which should be noticed.
For all numbers a, b, and ¢

a(b+c¢) =ab+ ac
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and for all numbers a, r, and x
a(r +x) = ar + ax

state precisely the same fact that is stated by (2)!. That is, the particu-
lar letters that are used in a statement of this sort, are inconsequential;
so our mathematical language has the curious property that the letters
which occur can be varied almost at random!

There is another sort of statement which will occur frequently in
our work. Consider the following:

There is a number x such that z +2 = 5.

For some number a, a + 2 = 5.

There exists a number r such that r + 2 = 5.

Clearly, all of these statements assert the same fact: namely, that
there is a number which when added to 2 yields 5. It is sometimes said
that statements of the form ‘x + 2 = 5’ are conditional equations, and
that statements of the form ‘z +y = y + ¢’ are identities. We shall not
use this technical sort of jargon.

There is one more question of meaning which we would like to
discuss before ending this linguistic introspection. In just what sense
is equality used? If, in a discussion of arabic and roman numerals,
we assert that 4 = IV, what is to be inferred from this statement?
We shall always use equality in the sense of logical identity, and the
assertion: ‘4=IV’ is simply to mean that ‘4’ and ‘IV’ are both names
for the same object. One object may have many names, and we may
use the names interchangeably. Anything which can be said about 4
can be said with the same amount of truth about IV.

Text 4

There are several statements about equality which are sometimes taken
as axioms: for example, ‘each thing is equal to itself’, ‘things equal
to the same thing are equal to each other’, and ‘if, in an equation,
equals are substituted for equals, the results are equal’. Because we
use equality only in the sense of identity, we can accept such statements
(and many more precise statements of this kind) as part of our natural
conception of the notion of identity. Of course, 4 = 4 since each object
is identical with itself. We may infer that 2 + 2 = 4 if we know that

1See p. 8
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242 =3+1and 3+ 1 = 4. These last two equalities tell us that
‘242’ and ‘341’ are names for the same object, and that ‘3+1’ and ‘4’
are names for the same object; we simply have three different names
for the same number, and quite evidently 2 + 2 = 4. A statement of
equality is always to be considered intuitively as an assertion that the
symbols on the left of the equality sign name the same thing that is
named by the symbols on the right.

We shall use letters ‘x’, ‘y’, etc., as if they were names. Strictly
speaking, they are not names, although one frequently finds in mathe-
matics books such statements as ‘let x denote a fixed, but arbitrary
number ...". Statements such as these are part of the technical jargon
which is psychologically useful in communication between mathemati-
cians, but one must not try to take such statements literally. In mathe-
matics a name always refers to a single object, and not, in promiscuous
fashion, to any one of a collection of objects. We use letters in much
the same way that pronouns are used and just as pronouns are used
in sentence structure like nouns, so letters are used in mathematical
structure like names. Similar rules of ‘grammar’ are to be used for
letters and for names. Thus, if z is a number and z + 5 = 7, we
take the view that ‘z + 5’ names the same number as is named by
“7’, and hence infer without ado that (z 4+ 5) + (=5) = 7+ (=5). In
more detail, we might phrase the reasoning as follows. It is true that
7+ (=5) = 7+ (=5) because each thing is identical with itself. If
x+5 =7, then ‘x + 5 and ‘7’ are names for the same thing, and we
may replace ‘7’ in ‘7 + (—5)’, using the other name ‘z + 5, and so find
that (x +5) + (=5) =7+ (=5).

We shall not need to use arguments like the preceding one; our
only objective in presenting such an argument here is to obtain a clear
intuitive understanding of the meaning of equality. The student should
be able to see that each of the following statements is true simply
because equality means identity.

If A is a triangle and A = B, then B is a triangle.

If x,y,u, and v are numbers and if z = y and v = v, then x +u =
y+v,z+u=zc+v,andx —u=y —u.

If £ and y are numbers and = = y + 2, then 17z = 17(y + 2) and
z+2y+2)+z=(y+2)+2z+z.

On the other hand, the following statements are true, but their
truth depends on additional algebraic facts and not just on the notion
of equality.

15
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If x and y are numbers, then z +y =y + z.
If  is a number, then = + 2z + 3 = 3(x + 1).

16
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Unit 2

Reading

I. Pre-reading questions:

1) What different sorts of numbers do you know?
2) What can you say on historical development of the number system?

I1. Read the text and try to get the main points.

Text

We began our discussion of algebra with axioms that apply to all num-
bers. We shall see that there are several different sorts of numbers:
the natural numbers, the integers, the rational numbers, and the irra-
tional numbers. We shall define these various sorts of numbers in this
section. There is a sort of chronology among the several sorts, in the
following sense. An intuitive conception of number certainly preceded
the formal description that we are giving, and the sets of numbers that
we define in this section were intuitively understood before any clear
understanding of the complete number system, as we now know it,
was accomplished. Historically, these various kinds of numbers were
not discovered, or if you prefer, invented, simultaneously. The natu-
ral numbers, 1, 2, 3, ..., were certainly used first. The number 0 was
first employed only a few hundred years ago, and still bears the stigma
of being unnatural. Negative numbers appeared very late in history.
Finally, those mysterious objects, the irrational numbers, achieved re-
spectability and a secure position only in the 19th century in spite of

17
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an abortive effort to enter mathematics during the Hellenic age.

The axioms we have used for the numbers are not the only ones
possible. It is quite possible to begin with axioms for the natural
numbers, and then to construct all other numbers. It is also possible
to begin with set theory and construct the natural numbers and then
the rest of the numbers. We have chosen the set of axioms which we
use just because we learn more about numbers in less time than with
either of the other possible approaches.

There is one difficulty with our approach. We do not know, so
far, which numbers should be called natural, or integral, or rational.
This section is devoted to the definitions of these special kinds of num-
bers. The future development of this book does not require the ideas
expounded in this section, and we shall not go too deeply into the
subject. But it seems appropriate to try to connect our axiom system
with the sorts of notions of number that you have studied before.

III. Comprehension questions:

In the text they say:

1. ‘Historically these various kinds of numbers were not discovered
simultaneously’. (line 10)

What is meant by this?

2. ‘There is one difficulty with our approach.’ (line 25)

What is this difficulty?

IV. What do the words in italics refer to? Check against the text.

1. We shall define these various sorts of numbers in this section. (line
4)

2. ... the sets of numbers that we define in this section were intuitively
understood before any clear understanding of the complete number
system, as we know it, was accomplished. (line 7)

3. The axioms we have used for the numbers are not the only ones
possible. (line 18)

4. It is quite possible to begin with axioms for the natural numbers
and then to construct all other numbers. (line 19)

5. It is also possible to begin with set theory and construct the natural
numbers and then the rest of the numbers. (line 20)

18
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6. There is one difficulty with our approach. (line 25)

7. It seems appropriate to try to connect our axiom system with the
sorts of notions that you have studied before. (line 30)

Vocabulary

V. Give the Russian equivalents of the following expressions:

there is a sort of chronology; in the following sense; or if you prefer;
in spite of; the only possible; the rest of the numbers; so far; go too
deeply into the subject; it seems appropriate.

V1. Find words in the text that mean:

make use of something (3); some but not many; meaning; statement
that defines; diverse; go before; full, entire; attain (2); invent, make
known; happening or done at the same time; to come into, to join; to
build; suited to.

VII. Give nouns corresponding to these verbs:

to begin - to identify -
to discuss - to achieve -
to describe - to construct -
to define - to choose -
to understand - to approach -
to discover - to apply -

to invent - to develop -
to require - to connect -

19
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VIII. Make these adjectives negative using un, in, il, ir, tm . Consult
your dictionary if necessary.

natural important
rational capable
possible complete
regular legal
mobile

IX. Supply the necessary prepositions to make the sentences. Check
against the text.

1. We begin our discussion — algebra — axioms that apply — all
numbers.

2. There is a sort — chronology — the several sorts.

3. The irrational numbers achieved respectability and a secure position
only — the 19th century — spite — an abortive effort to enter mathe-
matics — the Hellenic age.

4. Tt is also possible to begin — set theory and construct the natural
numbers and then the rest — the numbers.

5. This section is devoted — the definitions — these special kinds —
numbers.

6. We shall not go too deeply — the subject.

X. Explain the use of one in these sentences:

1. The axioms we have used for the numbers are not the only ones
possible.

2. There is one difficulty with our approach.

Think of some other examples with the word one in different mean-
imngs.

Grammar

XI. Make these sentences interrogative or negative.

20
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1. There is a sort of chronology among the several sorts.

2. There is one difficulty with our approach.

3. There is a very nice exposition of this construction in Landau’s
‘Foundations of Analysis’.

4. Unfortunately, there is no written treatment of this construction
which is even semi-elementary.

XII. Fill in the chart with the comparative and superlative forms of
the given words:

Comparative | Superlative
much | — —
many | — —
little | — —
good | — —
bad — —

Give some examples with comparative or superlative degrees of these
words.

XIII. Supply the appropriate forms ( Active or Passive) of the verbs
given in brackets. Then check against the text.

1. We began our discussion with axioms that (to apply) to all numbers.
2. An intuitive conception of number certainly (to precede) the for-
mal description that we (to give), and the sets of numbers that we
(to define) in this section (to understand) intuitively before any clear
understanding of the complete number system, as we now (to know)
it, (to accomplish).

3. Historically, these various kinds of numbers (not to discover), or if
you (to prefer), (to invent), simultaneously.

4. The natural numbers, 1,2,3,..., (to use) certainly first.

5. The number 0 (to employ) first only a few hundred years ago, and
still (to bear) the stigma of being unnatural.

6. We (not to know) which numbers should (to call) natural, or integ-
ral, or rational.

7. This section (to devote) to the definitions of these special kinds of
numbers.
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8. The future development of this book (not to require) the ideas
expounded in this section.

XIV. Supply the proper forms (Past Indefinite or Present Perfect) of
the verbs given in brackets.

1. The sets of numbers that we define in this section (to understand)
intuitively before any clear understanding of the complete number sys-
tem, as we now know it, was accomplished.

2. The axioms we (to use) for the numbers are not the only ones
possible.

3. We (to choose) the set of axioms which we use just because we learn
more about numbers in less time than with either of the other possible
approaches.

4. The number 0 (to employ) first only a few hundred years ago.

5. But it seems appropriate to try to connect our axiom system with
the sorts of notions that you (to study) before.

6. Negative numbers (to appear) very late in history.

7. The irrational numbers (to achieve) respectability and a secure
position only in the 19th century.

8. We (to list) so far what might be called the purely algebraic axioms
about the numbers, and we (to examine) the consequences of these
axioms in some detail.

XV. Supply articles (a, the, —). Then check against the text.

1. There is — sort of — chronology among — several sorts, in —
following sense.

2. — intuitive conception of number certainly preceded — formal
description that we are giving.
3. — number 0 was first employed only — few hundred years ago.

4. We shall not identify — set of negative numbers until — next
section.

5. — axioms we have used for — numbers are not — only ones possible.

6. It is also possible to begin with — set theory and construct —
natural numbers and then — rest of — numbers.

7. We shall not go too deeply into — subject.
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XVI. Each of the following sentences has one mistake. Find it and
give the correct variant.

. We shall define this various sorts of numbers.
. There is a sort of chronology between the several sorts.

1
2
3. These various kinds of numbers did not discovered simultaneously.
4. The number 0 still bear the stigma of being unnatural.

5

The irrational numbers achieved respectability only in the 19th
century in spite an abortive effort to enter mathematics during the
Hellenic age.

6. It is quiet possible to begin with axioms for the natural numbers.
7. We begin with the set of axioms because we learn more about
numbers in less time then with either of the other possible approaches.

8. We do not know which numbers shall be called natural, or integral,
or rational.

9. An intuitive conception of number preceded the formal description
that we giving.

10. It seem appropriate to try to connect our axiom system with the
sorts of notions of number that you have studied before.

Discussion

XVII. What can you say concerning different sorts of numbers: the
natural numbers, the integers, the rational numbers and the irrational
numbers? Try to define them.

Writing

XVIII. There are many ways of showing sequential relationships. The
text under consideration gives one of them.

1. Look through it again and pick out all the linking words used to
describe chronological development of numbers.

2. Put away the original, use only the list of linking words, write a
paragraph presenting the complete number system. Remember to use
your own words.
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Supplementary Texts

Text 1

In our discussion of the elementary algebra of the number system there
have been already three undefined notions — number, addition, and
multiplication. In this section we want to discuss briefly an undefined
notion which is even more fundamental than that of number. We
digress for a moment to explain its importance.

There are a large number of abstract concepts in mathematics:
number, addition, multiplication, line, plane, vector, and so on. We
may very well ask if it is necessary, as we go more and more deeply into
mathematical theory, to keep listing more and more undefined terms.
That is, as the theory grows, must the list of undefined objects also
grow? It turns out that this is not the case. It is only necessary to have
a single, short list of such undefined objects, and the length of this list
is really surprising. It is one of the achievements of twentieth century
mathematics that a single undefined notion, that of set membership, is
adequate for all of mathematics! Numbers, addition, and all the other
mathematical concepts can be defined in terms of this single notion.
Unfortunately, actually beginning with this single notion and develop-
ing mathematics is rather too complicated a task for this course, but
perhaps knowing that it is possible will explain why the notions of set
and of set membership are so pervasive in modern mathematics.

The terms ‘set’, ‘collection’, and ‘class’ will all be used interchange-
ably. Intuitively, a set is just a bunch of objects, and the objects are
called members of the set. A bunch of grapes, a covey of quail, and
a pride of lions can be considered to be sets with members being, re-
spectively, grapes, quail, and lions. If an object x is a member of a set
A, we write x € A. Thus, if R is the set of numbers, then 0 € R and
1 € R. We assume that if we are given an object x and a set A, then
it either is or is not the case that the object is a member of the set. In
the first case we write ‘x € A’ and in the latter we write ‘@ ¢ A’.

We frequently describe a set by listing its members in the follow-
ing fashion. {0,2,1} is the set whose members are 0, 2, and 1, and
{0,1, —1} has the members 0, 1, and -1. The order of listing is unim-
portant; the set {0, 1,2} is identical with the set {2,1,0}. Moreover,
we do not ‘count a member more than once’, and {0, 2,2} is identical
with {0,2}. The critical fact about sets is:
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Axiom of Extent. The sets A and B are identical if they have the
same members; that is, if every member of A is a member of B and
every member of B is a member of A, then A = B.

A set is completely described if we know its elements, and we shall
frequently define sets by giving a condition which enables us to decide
whether or not an object belongs to the set. The following notation is
usually used. ‘{z: (some condition about z)}’ is read as ‘the set of all
x such that the condition about z is the case’.

Text 2

Let ¢ be the set {x : 2 = 0 and x = 1}. This is a very curious set
because, of course, there is no object which is equal to 0 and also equal
to 1. It is called the empty set or the void set; it has no members.
That such a set ‘exists’ may surprise you a little, but the set ¢ is not
‘nothing’; an empty box is very different from no box at all.

It should be noticed, that there are other ways of describing the
empty set ¢. For example, {x : = # x} is the empty set because it is
always the case that x = . Any condition such that no object satisfies
the condition could be used to define ¢. In general, a condition permits
us to define a set, but many different conditions may give the same
set.

Text 3

Some rather interesting intellectual calisthenics can be based on the
notion of set and the rather surprising fact that many declaratory
sentences can be interpreted as statements about sets. We will give
two examples.

EXAMPLE We are given the statements:
(1) Socrates is a man.
(2) All men are mortal.
(3) Therefore Socrates is mortal.

The problem is to find and state a mathematical theorem of which
this is a special case. We begin by noticing that the first statement can
be considered as the assertion that Socrates is a member of a certain
set. Let A be the set of all men; then the first statement can be
paraphrased as ‘Socrates € A’. The second statement is a statement
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of set inclusion; if M denotes the set of all mortal beings, then this
statement says that each member of A is a member of M, that is,
A C M. The conclusion is supposed to be: Socrates € M. Thus, from
‘Socrates € A’ and ‘A C M’ we are supposed to deduce that Socrates
€ M. Using different terms, it is proposed that: If x € B and B C C,
then z € C. This is surely a theorem of set theory.

Before leaving this example, let us consider how certain other state-
ments could be translated into set theoretic language. Suppose it is
asserted that no man is mortal; this simply asserts that there is no ob-
ject which belongs to both A and to M — that is, AN M is the empty
set. Again, if it is asserted that some men are mortal, this amounts
to saying that there are objects belonging to both A and M, that is,
AN M is not the empty set.

EXAMPLE (From Lewis Carroll, with salutations to Schroeder.)
From the following three assertions we are to make whatever deduc-
tions are possible.

(1) Nobody who really appreciates Beethoven fails to keep silence,
while the Moonlight Sonata is being played.

(2) Guinea-pigs are hopelessly ignorant of music.

(3) No one who is hopelessly ignorant of music ever keeps silence while
the Moonlight Sonata is being played.

These can be interpreted as statements about various sets. Let
G = the set of guinea-pigs,

H = the set of creatures that are hopelessly ignorant of music,

K = the set of creatures who keep silence while the Moonlight Sonata
is being played, and

R = the set of creatures that really appreciate Beethoven.

The three statements now have the translations:

(1) RC K,

(2))G C H,

(3)'H N K is the empty set ¢.

@) ’
Figure 1

Figure 1 shows the relationship of the four sets R, K, G, and H. It
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is clear that there are no objects belonging to both R and G (the
mathematical theorem is: if R C K, G C H, and HN K = ¢, then
RN G = ¢). Translating this back from the mathematical language,
we conclude that guinea-pigs do not really appreciate Beethoven.

Before leaving this whimsical problem I should like to point out
that this is precisely the way in which mathematics is applied. We
always begin with some sort of physical assumptions (in this case the
statements (1), (2), and (3)) then by analogy or guess work translate
these into mathematical hypotheses (the statements (1), (2) and (3)"),
establish a mathematical theorem or theorems (if R C K, G C H and
HNK = ¢ then RNG = ¢) and finally, retranslate the mathematical
theorem to infer something about the physical problem (guinea-pigs
do not really appreciate Beethoven).

Text 4

Our first task is this: how do we define the natural numbers? We want
1 to be a natural number, and if n is a natural number then n + 1 is
to be a natural number. We begin by looking at some sets that are so
large that every natural number is a member.

DEFINITION A set A of numbers is inductive if and only if 1 is
a member of A and x + 1 is a member of A whenever x is a member
of A.

Let us give several examples of inductive sets. For the sake of
the examples, we’ll assume that we understand the notion of ‘greater
than or equal to’ although we shall not study inequalities until the
next section. The set of all numbers is certainly inductive, because
of the closure axiom; the set of positive numbers is inductive; the
set {x : x = 1or x =2 or x > 3} is also inductive; and we shall
certainly want the set of natural numbers to be inductive. No finite
set of numbers is inductive, and the set of all even integers fails to
be inductive. The number 1 belongs to every inductive set, and so
does 2 (why?), and 3. In fact it seems pretty clear that every natural
number ought to belong to every inductive set, and this is the key to
our definition.

DEFINITION A number x is a natural number if and only if x
belongs to every inductive set.

There is a perfectly obvious consequence of this definition: if A
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is an inductive set then every natural number belongs to A. This
important theorem has a name.

THEOREM (Principle of mathematical induction) If A is an in-
ductive set, then every natural number belongs to A.

We will use this theorem, and the definitions which precede it,
to establish a few simple properties of the natural numbers. First we
observe that 1 is a natural number because 1 belongs to every inductive
set. Next, we show that:

THEOREM If z is a natural number, then so is x + 1.

Proof If x is a natural number, then z belongs to every inductive set by
definition. But if x belongs to an inductive set, so does z + 1 because
of the definition of inductive set. Consequently x + 1 belongs to every
inductive set, and hence, by the definition of natural number, = + 1 is
a natural number.

The preceding theorem, together with the fact that 1 is a natural
number, shows that the set of natural numbers is an inductive set.

Text 5

As we have remarked, it is possible to show that if we are given two
systems that satisfy all of the axioms that we list, then one system is
simply a carbon copy of the other. In brief, the axiom of .this section
really completes the list of axioms about numbers.

We begin with the notion of the smallest element of a set of num-
bers. If A is a set of numbers it may happen that there is a member a
of A which has the property that it is smaller than every other member
of A. Formally, we make the definition:

DEFINITION A number a is the smallest or least member of a set
A of numbers if and only if a € A and a < b for every other member
b of A.

The smallest member of a set is just the member that is furthest to
the left in our geometrical interpretation. The number 1 is the smallest
member of the set N of natural numbers; the number 0 is the smallest
member of the set of non-negative numbers, and the number —2 is the
smallest member of {1, —2,4}. However, there are many sets that have
no smallest member. For example, there is no smallest member of the
set of all numbers (if z is a number, then z — 1 is another number
which is smaller). There is no smallest member of the set of positive
numbers, for if x is any positive number, then /2 is a positive number
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which is smaller. It is also easy to see that {z : 2 < z and z < 3} has
no smallest member. And of course the empty set ¢ has no smallest
member, since it has no member.

We could also define the largest member of a set and much the same
sort of situation would occur. However, we want to consider numbers
that are in a slightly different relationship to a set A. We will say that
a number b is an upper bound for a set A if and only if b is at least as
large as every member of A. The number b may or may not belong
to A, this is irrelevant; but b is supposed to be no smaller than any
member of A. Formally:

DEFINITION A number b is an upper bound for a set A if and
only if b > x or b=z for every member x of A.

Thus 1 is not an upper bound for the set {0,—4,2} because a
member of the set, namely 2, is larger than 1; 2 is an upper bound for
{0, —4,2}, and so is 5, and so is 367. In general, if a set has an upper
bound b it has many other upper bounds — for example, b+ 1 is also
an upper bound. In fact, if b is an upper bound for a set A then every
number larger than b is also an upper bound. The set of all numbers
has no upper bound. The set of natural numbers also fails to have an
upper bound (this is a very important fact which, curiously enough,
cannot be proved without assuming the axiom of continuity). It is also
true that the set P of positive numbers has no upper bound — that
is, there is no number which is greater than or equal to every positive
number (proof: if b is an upper bound for P, then b > 1, and since
1 > 0, it follows that b > 0; thus b is positive, and clearly b + 1 is a
larger positive number, which is a contradiction), Every number is an
upper bound for the empty set ¢.

Text 6

The purpose of this section is very restricted: it is to introduce the
terms ‘finite’, ‘countable’, and ‘infinite’. It provides a basis for the
study of cardinal numbers, but it does not pursue this study. Although
the theories of cardinal and ordinal numbers are fascinating in their
own right, it turns out that very little exposure to these topics is
really essential for the material in this text. A reader wishing to learn
about these topics would do well to read the books of P.R. Halmos and
W. Sierpinski.

We shall assume familiarity with the set of natural numbers. We
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shall denote this set by the symbol N; the elements of N are denoted
by the familiar symbols

1,2,3,....

The set N has the property of being ordered in a very well-known way:
we all have an intuitive idea of what is meant by saying that a natural
number n is less than or equal to a natural number m. We now borrow
this notion, realizing that complete precision requires more analysis
than we have given. We assume that, relative to this ordering, every
non-empty subset of N has a smallest element. This is an important
property of N; we sometimes say that N is well-ordered, meaning that
N has this property. This Well-Ordering Property is equivalent to
mathematical induction. We shall feel free to make use of arguments
based on mathematical induction, which we suppose to be familiar to
the reader.

By an initial segment of N is meant a set of natural numbers which
precede or equal some fixed element of N. Thus an initial segment S
of N determines and is determined by an element n of N as follows:

An element x of N belongs to S if and only if z < n.

For example, the subset {1,2} is the initial segment of N determined
by the natural number 2; the subset {1,2,3,4} is the initial segment
of N determined by the natural number 4; but the subset {1,3,5} of
N is not an initial segment of N, since it contains 3 but not 2, and 5
but not 4.

DEFINITION. A set B is finite if it is empty or if there is a one-one
function with domain B and range in an initial segment of N. If there is
no such function, the set is infinite. If there is a one-one function with
domain B and range equal to all of N, then the set B is denumerable
(or enumerable). If a set is either finite or denumerable, it is said to
be countable.

When there is a one-one function with domain B and range C, we
sometimes say that B can be put into one-one correspondence with C.
By using this terminology, we rephrase the Definition and say that a
set B is finite if it is empty or can be put into one-one correspondence
with a subset of an initial segment of N. We say that B is denumerable
if it can be put into one-one correspondence with all of N.

It will be noted that, by definition, a set B is either finite or infinite.
However, it may be that, owing to the description of the set, it may
not be a trivial matter to decide whether the given set B is finite or
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infinite. In other words, it may not be easy to define a one-one function
on B to a subset of an initial segment of N, for it often requires some
familiarity with B and considerable ingenuity in order to define such
a function.

The subsets of N denoted by {1, 3,5}, {2,4,6,8,10}, {2,3,...,100},
are finite since, although they are not initial segments of N, they are
contained in initial segments of N and hence can be put into one-one
correspondence with subsets of initial segments of N. The set E of
even natural numbers

E ={2,4,6,8,...}
and the set O of odd natural numbers
0=1{1,3,57,..}

are not initial segments of N, and they cannot be put into one-one

correspondence with subsets of initial segments of N. (Why?) Hence

both of the sets £ and O are infinite, but since they can be put into one-

one correspondence with all of N (how?), they are both denumerable.
Even though, the set Z of all integers

Z={.,-2,-1,0,1,2,..},

contains the set N, it may be seen that Z is a denumerable set.
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Reading

1. Pre-reading questions:

1. What do you know about ‘ordered pairs’?
2. Try to give a definition of the notion ‘ordered pairs’.

I1. Read the text. Think of the questions to the main points of it. Then
try to answer the questions given by other students.

Text

Our first task is to define the notion of ordered pair. That is, for
every two objects a and b we want to have an object (a,b) which
has the property that if (a,b) = (¢,d), then a = ¢ and b = d. It is
quite reasonable to take the notion of ordered pair as undefined, and
to assume the property just listed as an axiom. However, this seems
a little wasteful since it is not at all difficult to define an ordered
pair in terms of sets. Consequently, in order to give the reader a
little more practice in set theory, we shall make this definition and
prove the desired property as a theorem. If the reader doesn’t want
any more practice in set theory he can assume, without damaging his
understanding of this course, that ordered pair is undefined and that
our first theorem is an axiom.

The idea underlying the definition we give is quite simple. Given
two objects a and b, we want to construct a set involving a and b and
having some special structure so that we can ‘recover’ a and b from
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the set; this special set will then be called the ordered pair (a,b). (The
term ‘ordered’ is syntactical, not mathematical; it derives from the fact
that (a,b) is not necessarily equal to (b,a).) Our first guess might be
to set (a,b) = {a, b}, but this doesn’t work because {a,b} = {b,a} and
the theorem we want would be false. However, a slightly more com-
plicated definition does work. The definition we give suggests strongly
the terminology ‘first coordinate’ and ‘second coordinate’ which will
presently be used.

DEFINITION (a,b) = {{a,1},{b,2}}.
Thus the members of (a,b) are {a,1} and {b,2}.

It is convenient, to prove a lemma before establishing the single
theorem on ordered pairs.

LEMMA If {z,y} = {z,2}, then y = z.
Proof If {z,y} = {z,z}, then y € {z,z} and therefore either y = z,
in which case the lemma is established, or y = x. In the latter case
{z} = {z,y} = {z, 2} and hence z = z. Thus in this case y = = and
z = x and therefore y = z.

THEOREM (on ordered pairs) If (a,b) = (¢,d), then a = b and
c=d.
Proof By hypothesis {{a,1}, {b,2}} = {{c,1},{d,2}} and therefore
{a,1} = {c,1} or {a,1} = {d,2}. In the first case a = ¢ by reason
of the preceding lemma, and in the second case it is easy to see that
a =2 and d = 1. Similarly {c,1} = {a,1} or {¢,1} = {b,2} and we
infer that @ = ¢ or ¢ = 2 and b = 1. Thus either a = ¢ or all of
the following hold: a = 2, d = 1, ¢ = 2, and b = 1. Thus in any
case a = ¢. We may therefore apply the preceding lemma to the case
{{a,1},{b,2}} = {{c,1},{d, 2}} and deduce that {b,2} = {d,2}. If we
apply the lemma again, we see that b = d.

If a set A is an ordered pair, then A = (a,b) for unique objects
a and b, because of the preceding theorem. Hence we can, without
ambiguity, define:

DEFINITION The first coordinate of (a,b) is a and the second
coordinate is b.

II1. In the text they say:

1. It is quite reasonable to take the notion of ordered pair as undefined,
and to assume the property as an axiom.
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2. It is not at all difficult to define an ordered pair in terms of sets.

Comment on these statements.

Vocabulary

IV. Give the Russian equivalents of the following:

it is quite reasonable; this seems a little wasteful; in terms of; in order
to give; in the latter case; not necessarily equal; by hypothesis; by
reason of the preceding lemma, all of the following hold; in any case.

V. Find words in the text that mean:

concept; special quality; to believe before there is proof; nevertheless;
as ; accordingly; to form the basis of something; incorrect; to put
forward for consideration or as a possibility; soon, at present time;
thing well done or successfully completed; greater or more important;
inside; so; to set up; for that reason(2); the second of two things already
mentioned; without ambiguity.

V1. All these verbs have appeared in the text. Give nouns for these
verbs. Consult your dictionary for their meaning, spelling and pro-
nunciation:

to define - to derive -
to assume - to suggest -
to list - to use -

to prove - to establish -
to damage - to apply -

to recover - to deduce -

VII. In the text there are such pairs of nouns as set theory and
number system. Here the first noun behaves like an adjective, and
it is an attribute to the second one. Translate into Russian the pairs
given below and think of your own examples:

town library; iron bridge; paper bag; life insurance; oil difficulties;
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flight delay; price index; steel production; steel demand; market posi-
tion; car key; computer keyboard.

VIII. Put in the correct prepositions.

1. It is quite reasonable to take the notion — ordered pair as undefined.
2. If the reader doesn’t want any more practice — set theory he can
assume, — damaging his understanding — this course, that ordered
pair is undefined and that our first theorem is an axiom.

3. The term ‘ordered’ is syntactical, not mathematical; it derives —
the fact that (a,b) does not necessarily equal (b, a).

4. This accomplishment and C. S. Pierce’s brilliant idea — defining
relations as sets — ordered pairs were major steps — the construction
— all mathematics — set theory.

5. It is convenient to prove a lemma before establishing the single
theorem — ordered pairs.

Grammar

IX. Rewrite these sentences using the ing-form instead of the italicized
verbs.

1. We want to have an object which has the property ...
2. The idea which underlies the definition we give is quite simple.

3. ... we want to construct a set which involves a and b and has some
special structure ...
4. ... a definition which involves only set theory can be given.

X. Supply with proper forms of the verbs in brackets.

1. Our first task is (to define) the notion of (to order) pair.

2 He can (to assume) without (to damage) his (to understand) of this
course that (to order) pair is undefined.

3. (to give) two objects a and b, we want (to construct) a set (to
involve) a and b and (to have) some special structure.

4. This accomplishment and C. S. Pierce’s brilliant idea of (to de-
fine) relations as sets of (to order) pairs (to be) major steps in the
construction of all mathematics within set theory.
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5. It is convenient (to prove) a lemma before (to establish) the single
theorem of (to order) pairs.

6. We shall (to make) this definition and (to prove) the (to desire)
property as a theorem.

XI. You know that the verb to do as an auziliary verd is used to make
questions and negatives in the simple present and simple past tenses,
and also in place of a verb in short answers and question tags.

E.g.
Do you agree with me ? — Yes, I do.
You don’t know this rule.
She speaks English, doesn’t she?

Sometimes the verb to do is used for emphasis.

E.g.
I did answer your question.
Do sit down.

Here do, does, did always have stress, and emphasize positive mean-
ing. We use the simple form of the verb after them.
Comment on the use of the verb to do in the sentences from the text.

1. ... but this doesn’t work ... (line 19)
2. However, a slightly more complicated definition does work. (line
20)

Now make the statements below more emphatic.

1. I wrote that letter. I am positive of it.

2. She took the book. She told me so.

3. You are mistaken. I want to study English.

4. This student doesn’t study hard, but he attends class regularly.

5. Columbus didn’t reach the Indies, but he reached a new continent.

XII. In the text there is a sentence with in order to.

‘Consequently, in order to give the reader a little more practice in set
theory, we shall make this definition and prove the desired property as
a theorem.’
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The table below shows how to use in order to and for.

(a) He came here in order In order to is used to
to study English express purpose.
It answers the question ‘Why?’
(b) He came here to study In order is often omitted,
English. as in (b).
I went to the store For is sometimes used
for some bread. to express purpose,
but it is a preposition
I went to the store and is followed by
(in order) to buy some bread | a noun object. Use (in
order to not for with a verb.

Insert in order to or for:

1) She borrowed my dictionary — look up the spelling of ‘occurrence’.
2) I went to the library — study last night.

3) My friend went to Chicago — a business conference.

4) T came to this school — learn English.

5) Mary went to the market —some vegetables.

6) I need a part-time job — earn some money — my school expenses.

XIII. In the text there are sentences with Subjunctive Mood.

1. Our first guess might be to set (a,b) = {a,b} (line 18)
2. ... and the theorem we want would be false. (line 20)

Complete the sentences below with would, could, might and the verb
in brackets. Translate them into Russian.

1. T — (to read) the book, but I can’t find it anywhere.

2. He — (to visit) you, but he doesn’t know your address.

3. I — (not to finish) the work without your help.

4. My friend — ( to solve) the problem, but unfortunately he is out.
5. I — (to answer) the phone, but I didn’t hear it ring.

6. He — (to finish) his education, but he had to quit school and find
a job in order to support his family.
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XIV. Put the words in the right order to form a sentence. Then check
against the text.

. underlying, the, we, idea, the, quite, is, simple, give, definition.

. undefined, ordered, is, and, first, is, an, theorem, axiom, our, pair.
. hold, all, the, of, following.

. slightly, however, a, more, definition, complicated, work, does.

. two, given, want, we, objects, set, a, to construct.

T W N~

Writing
XV. Give an illustration to clarify the following idea.

The method of labeling points in the geometric plane establishes a one-
to-one correspondence between geometric points and ordered pairs.

Use: for example, for instance, an example of this, as an example, that
is, etc.

Supplementary Texts

Text 1

These sections begin the study of the geometry and algebra of 2- and
3-dimensional vector spaces. We define ordered pairs and triples, and
then describe geometric points as ordered pairs (or triples) of numbers;
we also call these vectors. We are anxious to utilize the geometric
intuition which the student may have obtained in plane geometry, and
we consequently use geometric illustrations systematically. Later we
begin to define geometric objects precisely, in terms of the undefined
terms and axioms of our system. Finally, we apply vector algebra to
the study of straight lines; it is interesting to notice that all of the
theorems about lines which occur here are true in either two or three
dimensions and, in fact, in any number of dimensions.

Lastly, just as our study of the number system led us to consider
the notion of set, so the notion of function arises here. We define
‘function’ in terms of sets. It is noteworthy that the notion of function
is, with the possible exception of the notion of set, the most important
concept in mathematics.
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Text 2

DEFINITIONS An ordered pair of numbers is called a 2-dimensional
vector, or a point in the coordinate plane, or simply a point in the
plane. The coordinate plane, or simply the plane, or 2-dimensional
vector space, is the set of all ordered pairs of numbers; it is {(x,y) :
x and y are numbers}.

There is a very good geometric reason for calling the set of pairs
of numbers the coordinate plane. Let us consider the geometric inter-
pretation shown in Figure 1.

(5,2)

(47'3)
Figure 1

A horizontal line is called the z-axis, a vertical line is called the
y-axis, and the point where they intersect is called the origin. The
x-direction is to the right, and the y-direction is vertically upward; if
you think of the figure as a map, then the y-direction is north and
the z-direction is east. To each pair of numbers — for example, (5,
2) — we assign a point in the plane by means of the prescription: go
from the origin in the z-direction a number of units equal to the first
coordinate of the pair and then proceed in the y-direction a number of
units equal to the second coordinate of the pair. Thus (5, 2) is 5 units
in the z-direction and 2 units in the y-direction. The first coordinate
of a pair is frequently called the z-coordinate (or the abscissa), and the
second the y-coordinate (or ordinate). If the z-coordinate is negative,
we understand that we are to proceed in the direction opposite to
the z-direction the stated number of units, and similarly for the y-
coordinate. Thus (—3,1) is the point as shown in the upper left-hand
corner; (4, —3) is as shown in the lower right-hand corner. We notice
that the z-coordinate of a point is the distance from the y-axis to
the point, with the sign correctly chosen, and the y-coordinate is the
distance from the z-axis to the point.

40



30

35

40

45

10

Unit 3

This method of labeling points in the geometric plane establishes
a one-to-one correspondence between geometric points and ordered
pairs; that is, each point is labeled by just one ordered pair of num-
bers, and each ordered pair of numbers labels just one point. This
is an important accomplishment. It makes it possible for us to study
properties of the geometric plane by means of the algebraic properties
of the set of pairs of numbers.

There is no great difficulty in defining ordered triple of objects and
in finding a geometric interpretation of the set of ordered triples of
numbers. In much the same fashion as with pairs, we seek a definition
of (a,b,c) such that if (a,b,¢) = (p,q,r), then a = p, b =¢, and c = 7.
The following definition will do.

DEFINITION (a,b,c) = ((a,b),c).

That is, the ordered triple (a,b,c) is the ordered pair whose first
coordinate is (a,b) and whose second coordinate is c.

THEOREM If (a,b,c) = (p,q,r), thena=p, b=gq, and c =r.
Proof If (a,b,c) = (p,q,r), then by the definition of ordered triple we
see that ((a,b),c) = ((p,q),r). Applying the theorem on ordered pairs
we infer that (a,b) = (p,q) and ¢ = r, and applying the same theorem
again, we see that a = p and b = q.

Again, if the student prefers to take the notion of ordered triple as
undefined and assume this Theorem as an axiom, no harm is done.

Text 3

Before beginning the study of vector geometry we want to define one
of the most important notions of mathematics, that of function. In-
tuitively, a function is supposed to be a correspondence which assigns
to each object in a certain class, called the domain of the function,
some corresponding object. For example, we may consider the corres-
pondence that assigns to each person his mother; this correspondence
is a function, the essential feature being that to each member of the
domain, which in this case is the set of all people, there is assigned
precisely one member of another set (in this case, the set of all moth-
ers). Of course, several different people (brothers and sisters) may
correspond to the same mother; in mathematical terms, this corres-
pondence isn’t one to one. But to each person, there corresponds just
exactly one mother. Let us denote the correspondence by M; we em-
phasize that M is not the set of all persons, nor the set of all mothers,
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but is the correspondence itself. If C' is a member of the domain of
M, that is, C' is a person, then the mother of C is denoted by M (C).
Thus, M (George VII) = Victoria and M (Elizabeth) = Ann Boleyn.
In general, if f is a function and x is a member of the domain of f,
then f(x) is that object that corresponds to . It is called the value
of f at x.

A more mathematical example may be helpful. Consider the corre-
spondence f which is pictured schematically in Figure 1. The domain
of f is supposed to consist of points a, b, ¢, d and the correspondence
f sends a into a point p, b into a point ¢, ¢ into r, and d into p; that

is, f(a) = p, f(b) =q, f(c) =7, and f(d) = p.

a f « P
bo « q
C o . r
d

Figure 1

Before giving further examples of functions let us consider the ma-
jor mathematical problem of the section. What are we going to define
a function to be? The key to the definition is the fact that a corres-
pondence is completely described if we know what object corresponds
to each member of the domain. This suggests that if we know the set
of all ordered pairs of the form (member of the domain, corresponding
object), then the function should be completely described. In other
words, the set of all pairs (z, f(x)) completely describes it. Thus the
function f defined in the preceding paragraph is completely described
by the set {(a,p),(b,q),(c,7),(d,p)}. If this seems confusing, don’t
worry. The intuitive notion of a function is just that of a correspon-
dence, and the only facts about functions which we need are given in
the single theorem of this section.

DEFINITION f is a function if and only if f is a set of ordered
pairs, no two of which have the same first coordinate. More formally,
f is a function if and only if f is a set, each member of f is an ordered
pair, and if (z,y) and (z,2) belong to f, then y = 2.

For example, {(0,1),(1,1)} is a function; but {(1,0),(1,1)} is not
a function.

We will use the terms ‘function’, ‘correspondence’, and ‘map’ or
‘mapping’, interchangeably.
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A member of a function f is then a pair with first coordinate a
member of the domain and second coordinate the object which corres-
ponds to this member. The requirement that no two pairs belonging
to f have the same first coordinate is just a way of ensuring that there
is just one object corresponding to each member of the domain. We
can define very easily the domain of a function, and the value of the
function at a member of its domain.

DEFINITIONS The domain of a function f is the set of first coor-
dinates of members of f. The value of f at a member z of its domain,
denoted f(z), is the second coordinate of that member of whose first
coordinate is z. The set of all second coordinates of members of f is
the range of f.
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Reading

1. Pre-reading questions:

1. What is a quadratic equation?
2. What is necessary to know for solving quadratic equations?

I1. Read the text. Make a list of unknown words. Consult your dictio-
nary for their meaning and pronunciation.

Text

It is natural after considering the solution or linear equations to at-
tempt to solve quadratic equations. That is, we attempt to find for
just what numbers z it is true that ax® + bz + ¢ = 0, where a, b, and
¢ are numbers. If a is 0, then the equation to be solved is actually
linear and we have already discussed this problem in detail; so we will
always assume that the coefficient of 2 is not 0.

We will prove a single theorem and make a single application of the
theorem. But it should be said that the main purpose of the section is
not just to know and understand the theorem, but also to understand
and be able to apply the process by which the theorem is proved.
The student, in brief, should acquire some skill in solving quadratic
equations, both by means of the theorem of this section, and by means
of the procedure which underlies the theorem. It is to be regretted that
acquiring skill is sometimes a little uninteresting; nevertheless, anyone
interested in mathematics must learn to solve quadratic equations just
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as every child has to learn to tie shoelaces; otherwise one stumbles.

The single idea that underlies the solution of quadratic equations is
this: it is easy to find the numbers z such that 22 +2pz+p? = ¢, if p and
q are any numbers. The reason it is easy is that 22 +2pz+p? = (z+p)?,
and the numbers x such that (z + p)? = ¢ can be classified as follows:
if ¢ is positive, then = + p must be either /g or —,/g and x must be
either —p + ,/q or —p — /q, if q is negative there is no number z such
that (x + p)? = ¢; and if ¢ = 0 the only number such that (z +p)? =0
is —p. The method of solving other quadratic equations is roughly
this: we think fondly of the equation

4+ 2pr+pP=(x+p)’=¢q

and attempt, without employing violence, to arrange the equation to
be solved so that it resembles the preceding. Somewhat more precisely:
we attempt to arrange the equation so there is a ‘perfect square’ on
the left, and a number on the right.

II1. In the text they say:

1. Anyone interested in mathematics must learn to solve quadratic
equations. (line 14-15)

2. We attempt to arrange the equation so there is a ‘perfect square’
on the left and a number on the right. (line 29)

Comment on these statements.

IV. What do the italicized words refer to?

. ... we have already discussed this problem in detail. (line 5)
. ... otherwise one stumbles. (line 16)

3. The method of solving other quadratic equation is roughly this ...
line 24)

4. ... so that it resembles the preceding. (line 28)

1
2
(
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Vocabulary

V. Give the Russian equivalents of the following:

it is natural; that is; in detail; in brief; by means of; underlies the
theorem; it is to be regretted; as follows; anyone interested in; the
only number; somewhat more precisely; on the left; on the right.

V1. Find words in the text that mean:

to think about; to find the answer to ...; to try; to exchange ideas on;
to believe before there is proof; to make practical use of; putting to
a special or practical use; most important; intention; to gain by skill,
ability or by one’s own efforts; ability to do something well; to be sorry
for; however; if not; single; to put into order; to be like.

VII. Supply these sentences with nouns instead of verbs in brackets.

1. It is natural after considering (to solve) of linear equation to attempt
to solve quadratic equations.

2. We will make a single (to apply) of the theorem.

3. The student should acquire some skill in solving quadratic equations
by (to mean) of this theorem and by (to mean) of (to proceed) which
underlies the theorem.

Give nouns for these verbs:

to attempt to acquire
to discuss to classify
to assume to employ
to know to arrange
to prove to solve
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VIII. What is the opposite of these adjectives? If necessary consult

your dictionary:

IX. In the text you have come across some paired conjunctions. This
table shows how to use both ...

interesting
expected
agreeable
legal

. or; neither ... nor .

and; no only ...

possible
honest
thinkable

moral

(a) Both my mother and my sis-
ter are here.

(b) Not only my mother but also
my sister is here.

(c) Not only my sister but also
my parents are here.

(d) Neither my mother nor my
sister is here.

(e) Neither my sister mor my
parents are here.

Two subjects connected by
both ... and take a plural verb.
When two subjects are con-
nected by not only ... but
also, either ... or, neither

nor the subject that is
closer to the verb determines
whether the verb is singular
or plural.

(f) The research project will
take both time and money.

(g) Yesterday it not only rained
but also snowed.

(b)T’ll take either chemistry or
physics next quarter.

(i) That book is neither
interesting nor accurate.

Notice the parallel structure
in the examples.

The same grammatical form
should follow each word of the
pair.

Supply is or are in the following.

1. Both the teacher and the student ... here
2. Neither the teacher nor the student ... here.
3. Not only the teacher but also the student ... here.
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4. Not only the teacher but also the students ... here.
5. Either the students or the teacher ... planning to come.
6. Either the teacher or the students ... planning to come.

Complete these sentences with both ... and; either ... or; neither
. nor.

1. The student should acquire some skill in solving quadratic equations
— by means of this theorem — by means of the procedure which
underlies the theorem.
2. If q is positive, then x + p must be — /g — —,/g and z must be
S B
. This problem is — difficult — interesting.
. We can — prove this theorem — apply it.
. The city suffers from — air — water pollution.
. I'm studying — math — chemistry.
. Our country has — good schools — good universities.
. The result was — good — bad.
— the library — the bookstore has the book I need.
0 — coal — oil are irreplaceable natural resources.

© 00~ O ULk W

X. Suggest the meaning of the italicized words:

1. The student should acquire some skill in solving quadratic equa-
tions.

2. Nevertheless, anyone interested in mathematics must learn to solve
quadratic equations just as every child has to learn to tie shoelaces.
3. It is easy to find the numbers x such that 2% 4+ 2pz + p*> = ¢, if p
and ¢ are any numbers.

4. If q is negative there is no number x such that (z + p)? = 2 is —p.

Grammar

XI. Put questions to these sentences, either general or to the italicized
words.

1. We have already discussed this problem in detail. (General)
2. We will always assume that the coefficient of z2 is not 0.
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3. The student should acquire some skill in solving quadratic equations.
4. Anyone interested in mathematics must learn to solve quadratic
equations.

5. This idea underlies the solution of quadratic equations.

6. We attempt to arrange the equation. (General)

7. There is no number x such that (z + p)? = ¢q. (General)

XII. Note the use of the Infinitive in the following sentence:

If @ is 0, then the equation to be solved is actually linear. (line 4)
The to-infinitive is often used after a noun to convey advice, purpose,
etc. This construction is like a relative clause.

e.g. The person to ask is Mike (=the person whom you should ask).

I've got an essay to write (=an essay which I must write)
Sometimes active and passive infinitives are interchangeable.

e.g. After the discussion, there was some work to do/ to be done.
When the subject of the sentence is the person who is to do the action
described by the infinitive, we do not normally use the passive.

e.g. I have a report to prepare (Not ‘to be prepared’)

Now translate the sentences into Russian.

1. All the data to be presented here refer also to the above problems.
2. The explanation will probably be considerably modified in the years
to come.

3. The method to be followed is based upon some peculiar properties
of these rays.

4. Here are some more figures to be referred to later.

5. This is the important question to be answered.

6. He was the first to note this phenomenon.

7. This theory will be adequate for practical applications through
centuries to come.

XIII. Supply these sentences with modals. Then refer to the text.
Alternatives are possible. In each case give a reason for your choice.

1. It — be said that the main purpose of the section is not just to
know and understand the theorem, but also to understand and — to
apply the process by which the theorem is proved.
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2. The student — acquire some skill in solving quadratic equations.
3. It — to be regretted that acquiring skill is sometimes a little unin-
teresting.

4. Anyone interested in mathematics — learn to solve quadratic equa-
tions just as every child — to learn to tie shoelaces.

5. The numbers z such that (z + p)* = ¢ — be classified as follows.
6. If ¢ is positive, then z + p — be either /g or —,/g and  — be
either —p + ,/q or —p — /4.

XIV. In the text we have sentences with so that, used to express
purpose. It expresses the same meaning as in order to. The word
that is often omitted, especially in speaking.

e.g. We attempt to arrange the equation to be solved so that it
resembles the preceding. (line 27)

We attempt to arrange the equation so there is a ‘perfect square’
on the left, and a number on the right. (line 29)

Look at the examples with so that . Mind the tense of the verb in the
adverb clause after it.

Please turn down the radio so (that) I can get to sleep.

My wife turned down the radio so (that) I could get to sleep.
Put the milk in the refrigerator so (that) it won’t (doesn’t) spoil.
I put the milk in the refrigerator so (that) it wouldn’t spoil.

Combine the ideas by using so (that) according to the patterns given
above.

1. Please be quiet. I want to be able to hear what the teacher is saying.
2. I asked the students to be quiet. I wanted to be able to hear what
the teacher was saying.

3. I am going to cash a check. I want to make sure that I will have
(or have) enough money to go to the market.

4. I cashed a check yesterday. I wanted to make sure that I had enough
money to go to the market.

5. I'm going to leave the party early. I want to be able to get a good
night’s sleep tonight.

6. It’s a good idea for you to learn how to type. You’ll be able to type
your own papers when you go to the university.
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7. 1 turned on the TV. I wanted to listen to the news while I was
making dinner.

8. I unplugged the phone. I didn’t want to be interrupted while I was
working.

XV. Put the words in the right order to form sentences. Then check
against the text.

1. to be, the, linear, is, actually, solved, equation

2. discussed, we, already, in, problem, this, have, detail

3. prove, theorem, a, of, will, single, make, application, theorem, we,
a, and, single, the

4. should, skill, quadratic, student, some, solving, the, acquire, in,
equations

5. in, learn, equations, interested, must, quadratic, anyone, mathe-
matics, to solve

Writing

XVI. In the text below, the paragraphs are not in the correct order.
Rearrange the paragraphs into what you consider to be a suitably co-
herent order.

1. In order to get the variable alone on one side of the equation,
we must perform inverse operations to ‘undo’ the operations on that
side. Remember, addition undoes subtraction (and vice-versa), and
multiplication undoes division (and vice-versa).

2. In equations which contain only one variable, the highest power of
the variable is called the equation’s degree. For example, 5z—2 = 3x+8
is called a first degree, or linear equation; x? + 2z = 10 — z is called a
second degree, or quadratic equation; and z* + 5 = 22 + 6 is called a
third degree, or cubic equation.

3. Since we want the new, transformed equation to have the same
roots as the given equation, we must follow the equivalence principle
stated below

4. The particular method used to solve an equation depends upon
the equation’s degree. For first degree (linear) equations, we use the
method of inverse operations. The idea behind this method is to trans-
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form the given equation into an equivalent equation ( an equation hav-
ing the same roots) in which the variable appears alone on one side of
the equation, and a number appears alone on the other. This number
will be the root of the given equation

5. Whenever a number is added to, subtracted from, multiplied by, or
divided into one side of an equation, the same thing must be done on
the other side of the equation

What is in your opinion the central idea of the text? Write it out in
one sentence. Use: The main idea of the text under review is... The
text is devoted to (deals with, is concerned with) ... etc.

Supplementary Texts

Text 1

We have come to the point where we shall introduce a formal descrip-
tion of the real number system R. Since we are more concerned in this
text with the study of real functions than the development of the num-
ber system, we choose to introduce R as an Archimedean field which
has one additional property.

The reader will recall that if F' is an ordered field and if a, b belong
to F' and a < b, then the closed interval determined by a, b, which
we shall denote by [a,b], consists of all elements z in F' satisfying
a < x < b. It will also be recalled that if z is any element of an
Archimedean field F, then there is a nested sequence (I,) of non-
empty closed intervals whose only common point is x. However, it
was seen that a nested sequence of closed intervals does not always
have a common point in certain Archimedean fields (such as @). It is
this property that we now use to characterize the real number system
among general Archimedean fields.

DEFINITION. An Archimedean field R is said to be complete if
each sequence of non-empty closed intervals I, = [an,byn], n € N, of R
which is nested in the sense that

LD2LD...2I,D...,
has an element which belongs to all of the intervals I,,.
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ASSUMPTION. We shall assume that there exists a complete or-
dered field which we shall call the real number system and shall denote
by R. An element of R will be called a real number.

We have introduced R axiomatically, in that we assume that it
is a set which satisfies a certain list of properties. This approach
raises the question as to whether such a set exists and to what extent
it is uniquely determined. Since we shall not settle these questions,
we have frankly identified as an assumption that there is a complete
ordered field. However a few words supporting the reasonableness of
this assumption are in order.

The existence of a set which is a complete ordered field can be
demonstrated by actual construction. If one feels sufficiently familiar
with the rational field Q, one can define real numbers to be special
subsets of Q and define addition, multiplication, and order relations
between these subsets in such a way as to obtain a complete ordered
field. There are two standard procedures that are used in doing this:
one is Dedekind’s method of ‘cuts’ which is discussed in the books of
W. Rudin and E. Landau. The second way is Cantor’s method of
‘Cauchy sequences’ which is discussed in the book of N. T. Hamilton
and J. Landin.

In the last paragraph we have asserted that it is possible to con-
struct a model of R from Q (in at least two different ways). It is also
possible to construct a model of R from the set N of natural num-
bers and this is often taken as the starting point by those who, like
Kronecker, regard the natural numbers as given by God. However,
since even the set of natural numbers has its subtleties (such as the
Well-ordering Property), we feel that the most satisfactory procedure
is to go through the process of first constructing the set N from primi-
tive set theoretic concepts, then developing the set Z of integers, next
constructing the field Q of rationals, and finally the set R. This proce-
dure is not particularly difficult to follow and it is edifying; however,
it is rather lengthy. Since it is presented in detail in the book of
N.T. Hamilton and J. Landin, it will not be given here.

From the remarks already made, it is clear that complete ordered
fields can be constructed in different ways. Thus we cannot say that
there is a unique complete ordered field. However, it is true that
all of the methods of construction suggested above lead to complete
ordered fields that are ‘isomorphic’. (This means that if Ry and R»
are complete ordered fields obtained by these constructions, then there
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exists a one — one mapping ¢ of R; onto R such that (i) ¢ sends a
rational element of R; into the corresponding rational element of R,
(ii) ¢ sends a + b into ¢(a) + ¢(b), (iii) ¢ sends ab into ¢(a)p(b), and
(iv) ¢ sends a positive element of R; into a positive element of Rs.)
Within naive set theory, we can provide an argument showing that
any two complete ordered fields are isomorphic in the sense described.
Whether this argument can be formalized within a given system of
logic depends on the rules of inference employed in the system. Thus
the question of the extent to which the real number system can be
regarded as being uniquely determined is a rather delicate logical and
philosophical issue. However, for our purposes this uniqueness (or lack
of it) is not important, for we can choose any particular complete
ordered field as our model for the real number system.

Text 2

This section begins the study of solution of equations. It will turn out
that the linear equations whose solutions we discuss are closely con-
nected with certain functions which we will also call linear. We discuss
the geometry of linear functions briefly. The same sort of approach is
used in the next sections in the discussion of quadratic equations and
functions.

The basic problem is the following: given numbers m and b, we are
required to find all numbers x such that mxz + b = 0. Such numbers
are called solutions of the equation: mz + b = 0; and the set of all
solutions is called the solution set. Of course, this problem is entirely
trivial, and the results may be summarized: if m # 0, then —b/m is
the only solution; if m = 0 and b # 0, then there is no solution; and if
m = 0 and b = 0, then every number is a solution. In other words, in
these three cases the solution set is, respectively, {—b/m}, the empty
set, and the set of all numbers.

It is instructive, in considering the equation ma+b = 0, to consider
simultaneously the function f whose value at z is mx + b. That is,
the domain of f is the set of all numbers, and f(z) = ma + b for each
number z, alternatively, the function f (or if you prefer, the graph
of f)is {(z,mz 4+ b) : x a number}. The solutions of the equation
max + b = 0 are then just the numbers z such that f(z) = 0, and the
solution set is simply {z : f(x) = 0}.

We digress to comment on the algebraic descriptions of sets. There
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are three very common ways of describing sets. Many sets can be
described very naturally as the set of numbers, or pairs of numbers,
satisfying certain inequalities; such sets are sometimes called solution
sets of inequalities. Again, it is frequently convenient to describe a set
as the range of a function, the most noteworthy example being a line.
The line through A with direction number B is just the range of the
function X, where X (¢) = A + tB for all numbers ¢. Finally, as we
have noticed, a set may sometimes be described as the set of points
where a function f is equal to 0, or as the solution set of the equation
f(x) = 0. The later work will display many more examples of this sort
of description.
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Unit 5

Reading

1. Pre-reading questions:

1. What is a prime number?
2. Is 1 a prime number? If not, give your reasons.
3. Is there a point in the list of primes after which there are no more?

I1. Now read the text. Check your answers to the questions above. How
many of them did you answer correctly?

Text

Prime numbers are such integers as have only one and themselves for
divisors, i.e.,

2, 3,5, 7, 11, 13, 17, 19, 23, 29, etc.

Most of these are odd numbers; in fact only one of them is even.
However, this is not a very deep property, for actually only one prime
is divisible by three, etc.

The number 1 is not considered as a prime number for it gives
no additional information concerning the nature of a number when
it is decomposed into prime factors, e.g., 12 = 2 x 2 x 3. In such
multiplicative building up of numbers we construct (or decompose) a
number from (into) prime factors. Of course our numbers can be built
up in an additive manner e.g., 6 =2+4 = 14+1+14+3 = 1+1+1+1+1+1.
But reducing all numbers to a sum of units is of little interest.
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At the very beginning of the list, the primes are quite dense; how-
ever, they become less dense as we proceed to higher numbers. This
seems reasonable as we expect a high number to have a greater chance
of being divisible by a prime number than a low one. Now, do the
primes stop altogether? Is there a point in the list of primes after
which there are no more? This question is posed and answered in the
Elements of Euclid (which contains much of number theory) in the
following way.

Euclid asserts that there can be no last prime number.

I11. Comprehension check:

1. ‘However, this is not a very deep property’. (line 5) What is meant
by this?

2. At the very beginning of the list, the primes are quite dense. What
happens to their density as we proceed to higher numbers?

IV.What do the words in italics refer to? Check against the text and
note them down.

1. Prime numbers are such integers as have only one and themselves
for divisors. (line 1)

2. The number 1 is not considered as a prime number, for it gives no
additional information concerning the nature of a number when it is
decomposed into prime factors. (line 7)

3. This seems reasonable as we expect a high number to have a greater
chance of being divisible by a prime number than a low one. (line 15)
4. This question is posed and answered in the Elements of Euclid
(which contains much of number theory) in the following way. (line
19)

V. Join these notes to make sentences. Then check against the text.

1. Most — are — numbers — fact — one — even.
2. Of course — numbers — built — manner.

3. Now — the primes — altogether?

4. But reducing — a sum of units — interest.
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Vocabulary

VI1.Find words in the text that mean:

. entirely, completely
. and the reason is that; because
. the number by which another number is divided

. about, with regard to; in connection with
. final

UL W N~

VII. Give the Russian equivalents of the following:

in fact; is divisible by; information concerning the nature of a number;
in such multiplicative building up of numbers; a number is decomposed
into prime factors; is of little interest; at the very beginning; this seems
reasonable; the question is posed and answered; in the following way.

VIII. Maich these abbreviations with their meanings:

i.e. and the rest; and so on
etc. for example
e.g. that is

IX.The following words are in the text. Use your dictionary to find
the other parts of speech. Check the pronunciation.

noun adjective verb
divisor divisible —
information —
multiplicative
reasonable

— construct

— additive —
— — consider
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X.Pay attention to the meaning of for in the following sentences.
Think of your own examples with for in different meanings.

1. Prime numbers are such integers as have only one and themselves
for divisors.

2. This is not a very deep property, for actually only one prime is
divisible by three.

3. The number 1 is not considered as a prime number, for it gives no
additional information concerning the nature of a number when it is
decomposed into prime factors.

XI.Supply the suitable prepositions. Then check against the text.

1. Most — these are odd numbers; — fact only one — them is even.
2. Only one prime is divisible — three.

3. ...when it is decomposed — prime factors.

4. — such multiplicative building up — numbers we construct (or
decompose) a number — (—) prime factors.

5. Of course our numbers can be built up — an additive manner.

6. Reducing all numbers — a sum — units is — little interest.

7. — the very beginning — the list, the primes are quite dense; however
they become less dense as we proceed — higher numbers.

8. Is there a point — the list — primes — which there are no more?
9. This question is posed and answered — the Elements of Euclid
(which contains much — number theory) — the following way.

XII. What does one mean in these sentences?

1. Prime numbers are such integers as have only one and themselves
for divisors.

2. Most of these are odd numbers; in fact only one of them is even.
3. However, this is not a very deep property, for actually only one
prime is divisible by three.

4. This seems reasonable as we expect a high number to have a greater
chance of being divisible by a prime number than a low one.

60



Unit 5

Grammar

XIII. Themselves is a reflexive pronoun. What are the other forms
of reflexive pronouns?

singular: 1...2...3a) ...b) ...c) ...
plural: 1...2...3 ...
Which reflexive pronoun form goes into the space?

.Thurt....

. They fooled . ...

. We saw ...on television.

You . ..said so.

. The little girl wrote the letter all by ....

. The government made . ..unpopular.

. It is important to make a clear distinction between the function
.and the values of the function.

. The students ...may discover shortcuts for solving the problem.

N O T W N~

S

XIV.Give the proper form of the verb (Active or Passive).

1. The number 1 (not to consider) as a prime number, for it (to give)
no additional information concerning the nature of a number when it
(to decompose) into prime factors.

2. We (to construct) or (to decompose) a number from (into) prime
factors.

3. Our numbers (can, to build up) in an additive manner.

4. The primes (to become) less dense as we (to proceed) to higher
numbers.

5. This (to seem) reasonable as we (to expect) a high number to have
a greater chance of being divisible by a prime number than a low one.
6. This question (to pose) and (to answer) in the Elements of Euclid.
7. Tt (to contain) much of number theory.

8. Euclid (to assert) that there (can, to be) no last prime number.
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XV.Supply the comparative or superlative forms of the words in brack-
ets.

1. (Many) of these are odd numbers.

2. They become (dense) as we proceed to (high) numbers.

3. We expect a high number to have a (great) chance of being divisible
by a prime number than a low one.

4. TIs there a point in the list of primes after which there are no (many)?
5. Since Euler’s identity no (long) holds, we must seek a new relation.
6. Let P be the (large) prime (little) than 27V,

7. The next (large) class of numbers which we consider is the set of
integers.

XVI.Put questions to the following sentences, either general or to the
italicized words.

1. Most of these are odd numbers. (General)

2. Only one prime is divisible by three.

3. The number 1 is not considered as a prime number. (General)

4. It gives no additional information. (General)

5. We construct a number from prime factors.

6. Our numbers can be built up in an additive manner. (General)

7. They become less dense as we proceed to higher numbers. (General)
8. This seems reasonable. (General)
9. There are no more. (General)
10. There can be no last prime number. (General)

Writing

XVII. 1. The text under consideration deals with prime numbers. By
analogy with it write a definition of a composite number and explain
why all even numbers greater than two are referred to as composite
numbers.

2. Write each of the following composite numbers as a product of prime
number factors: 60,315,176, 825.
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Discussion

XVIII. The text says that reducing all numbers to a sum of units is
of little interest. Why? Give your reasons.

Supplementary Texts
Text 1

From the uniqueness of the factorization of a number into prime fac-
tors, it follows that any term on the left will be formed once and only
once when this product is multiplied out. Thus, this is a formal iden-
tity. Now if s — 1, we know that Y °, 1/n is divergent. But the
identity must hold for all s — so there must be infinitely many factors
on the right, if the identity is to hold.

>0, 1/n depends only on s and when s is any complex number
¢(s) = >;2, 1/n®, a meromorphic function with s = 1 as a pole, is
known as the Riemann (-function. It is of considerable importance
in number theory and is so named after Riemann (1826-1866), who
discussed it in a famous paper published in 1860.

Euler’s proof tacitly assumes that any number can be decomposed
into prime factors and that this decomposition can be accomplished
in just one way. This must be proved, but this we shall defer until
the next section. A more serious objection is that we have used the
notions of infinite series and products and the notion of a limit, none
of which are elementary. Now let us seek a proof modeled on Euler’s
— one that is truly elementary.

To eliminate these notions, let us put s = 1 and replace the infinite
series and product of Euler’s identity by a finite sum and product.
Since Euler’s identity no longer holds, we must seek a new relation:

v P 1
> n=l =7
n=1 b2 b 1/p
where v and P are numbers to be chosen.

First let us choose a number N, preferably a large one, and form
the sum 1+1+3+5+...+1/(2V=1)+1/2" i.e., choose v = 2V. And
then let P be the largest prime less than 2% which is surely composite,
so that we consider the sequence of primes, 2, 3,5, ..., P < 2V,
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If we make N larger, and do so continuously, then we expect that
the number of primes less than 2V will indeed increase, for if the set of
all prime numbers were finite, then we could not increase the number
of primes less than 2V by taking N larger and larger. This gives us
the motivation for a proof: can we show that some strictly increasing

function of N is always less than some function of the primes less than
2N?

Text 2

It is true that the product of two natural numbers is a natural number.
Thus the set of natural numbers is closed under addition and multi-
plication. There is a natural number which is a multiplicative identity
(namely 1), but no natural number is an additive identity (unless we
remove the bar sinister from 0). The natural numbers are not closed
with respect to subtraction or division, in the sense that the difference
or quotient of two natural numbers may fail to be a natural number.
For example, neither 1 — 2 nor 1/2 is a natural number.

The next larger class of numbers which we consider is the set of
integers.

DEFINITION A number x is an integer if and only if t = m —n
for some natural numbers m and n.

In other words, the integers are the differences of natural numbers.
The integers satisfy all the axioms of addition (that is, the axioms
with ‘number’ replaced by ‘integer’), but not all integers have integral
inverses with respect to multiplication.

The next larger class of numbers which we consider is called the
set, of rational numbers.

DEFINITION A number x is a rational number if and only if for
some integer a and some natural number b it is true that x = a/b.

Alternatively, the rational numbers may be described as the quo-
tients, with non-zero denominators, of integers. The rational numbers
satisfy all of the axioms for numbers which have so far been listed.
Only the continuity axiom for the numbers fails to be satisfied by the
set of rational numbers. (Again, we mean the axioms, with ‘number’
replaced by ‘rational number’.)

At this stage we cannot assert that there are numbers which are not
rational numbers (that is, are irrational numbers). But, eventually, we
shall attain that objective.
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Unit 6

Reading

1. Pre-reading questions:

1. What are twin primes?
2. Is it true that every even number can be written as the sum of two
primes?

I1. Read the text. Try to guess the meaning of the words you don’t
know. Then consult your dictionary to check their meaning and pro-
nunciation.

Text

Dirichlet proved that each simple arithmetic progression whose first
term and difference are coprime contains an infinite number of primes.
Now does the arithmetic progression of second order

2241, 4241, 62 +1, 8 +1, 10°+1, ..., (22)* +1, ...,

contain an infinite number of primes? No one knows. The answer
seems to be beyond our present strength.

Another famous unsolved problem is: Are there an infinite number
of twin primes, i.e., primes that differ by 2, e.g., 5 and 7, or I T and 137
No one knows. Such twin primes are scarcer than prime numbers. The
best result in this direction was obtained by a Norwegian mathemati-
cian, Viggo Brun. Curiously the fact that he was isolated from other
mathematicians seems to have favored his work — for they, no doubt,
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would have convinced him that it would be useless to employ the Sieve
of Eratosthenes to prove propositions on prime numbers. Using this
outmoded device, he was able to show that the sum of the reciprocals
of the twin primes converges, i.e., % + % + % + ﬁ + 11—3 + 11—7 + 11—9 +...
actually converges. This is surprising, for it can be shown that the
sum of the reciprocals of all primes diverges. Thus Viggo Brun’s result
is an advance. If the number of twin primes is finite, then the sum of
their reciprocals certainly converges. While if their number is infinite,
it shows that we lose very many primes in extracting this convergent
series from the divergent sum of the reciprocals of all primes, so that
the twin primes are indeed scarce.

In addition Brun considered numbers that were not prime but con-
sisted of at most 9 prime factors and succeeded in showing that among
such numbers there are infinitely many twins, i.e., numbers differing
by 2.

Since we know that the primes become less dense as we go to higher
numbers and suspect that they appear again and again as twins, we
expect that the prime numbers are very irregularly distributed. Are
there arbitrarily large gaps in the sequence of primes? Yes. For ex-
ample, consider M = 1000: The numbers M + 2, M + 3, M + 4, ...,
M + 1000 are not prime, for

M—2 is divisible by 2.
M —3 is divisible by 3.

M — 1000 is divisible by  1000.
Thus we construct 999 consecutive numbers no one of which is prime.
The same result could be obtained from the product, N, of all the
primes less than 1000. Adding 2,3,4,5, ... , 1000 successively to N, we
would have again 999 consecutive non-prime numbers, e.g., N + 6 is
divisible both by 2 and 3.

In a letter to Euler, a Russian named Goldbach asked if he could
prove that every even number can be written as the sum of two primes.
Mathematicians of the 18th century communicated their discoveries
one to the other by letter, as there were few journals, so that their
collected works consist in large part of correspondence. As a result of
this fact, this unproved proposition is known as the Goldbach conjec-
ture, though he is known for nothing else. However, the proposition is
reasonable, for
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4=2+2, 12=5+7,
6=3+3, 4=7+7=3+11,
8=15+3, 16=5+11=3+13,

10=5+5=3+7, 18=T7+11=5+13,
and no one has ever found an even number contradicting the Goldbach
conjecture. However, it is unproved. A major difficulty in proving this
is the nature of prime numbers — they are made for multiplication,
while the proposition is of an additive nature.

If the Goldbach conjecture were true, then adding 3 to every num-
ber we should have: Every odd number can be expressed as the sum
of three primes. However, this weaker proposition does not imply the
Goldbach conjecture — even if it were valid, still some even numbers
might not be expressible as the sum of two primes. This has not been
completely proved, but Vinogradov (1937), using ideas developed by
Hardy and Littlewood in the early 1920’s, succeeded in proving that
from a certain number, M, onward, all odd numbers are the sum of
three primes. Unfortunately his proof is an existence proof; it does
not yield a method of estimating M. Nevertheless, the importance of
this result is not to be underestimated.

Here we have a statement about all odd numbers greater than M —
one we could never verify experimentally. A function of mathematics
is to prove these things which are beyond experimental verification,
and in large part, the importance and interest of mathematics lie in
its ‘infinite tail’, in those propositions which are not experimentally
verifiable. For example, 5-3 = 3 -5 is mathematically dull, for we can
check it; while ab = ba is fascinating, for it is a statement about all
numbers.

We have noticed that the primes seem to be distributed irregularly.
However, Bertrand observed that between a and 2a there always is a
prime number. This is known as Bertrand’s Postulate and has been
proved by rather elementary means. Comparing the size of the interval,
a < p < 2a, with the first number a, we have the relative length of the
interval (2a — a)/a = 1. Thus the primes are regularly distributed in
the sense that there is at least one in each interval of relative length 1.

Now it would seem reasonable to ask if a smaller interval can be
assigned in which we can always find at least one prime. For example,
is the inequality a? < p < (a + 1)? valid for all a? This yields 1 <
2.3<4.4<5.7<9, for a equal to 1 and 2. Here the relative length of
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the interval is

(a+1)?—-a®> 2a+1 2 1 2

a? a? a a a

so that for large numbers the inequality, if valid, would assign a relative
interval in which we could find a prime much smaller than that of
Bertrand’s Postulate. Unfortunately this is unproved.

III. Answer the questions:

1. What did Dirichlet prove concerning simple arithmetic progres-
sions?

2. What result was obtained by V. Brun in this field?

3. Why do we expect that the prime numbers are very irregularly
distributed?

4. What did Goldbach ask in his letter to Euler? What is he known
for?

5. What was proved by Vinogradov?

6. What is an existence proof?

IV. What do the italicized words refer to? Check against the text.

1. Such twin pairs are scarcer than prime numbers. (line 9)

2. The best result in this direction was obtained by a Norwegian mathe-
matician V. Brun. (line 9-10)

3. This is surprising. (line 17)

4. If their number is infinite, it shows that we lose very many primes
in extracting this convergent series from the divergent sum of the re-
ciprocals of all primes. (line 20)

5. The same result could be obtained from the product, IV, of all the
primes less than 1000. (line 39)

6. As a result of this fact, this unproved proposition is known as the
Goldbach conjecture. (line 47)

7. This has not been completely proved. (line 63)

8. It does not yield a method of estimating M. (line 67)

9. Here we have a statement about all odd numbers greater than M
— one we could never verify experimentally. (line 70)

10. This is known as Bertrand’s Postulate. (line 80)
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Vocabulary
V. Give the Russian equivalents of the following word combinations:

to be beyond; no doubt; outmoded device; in addition; at most; the
same result; both ... and; one to the other; in large part; as a result; he
is known for nothing else; in the early 1920’s; from a certain number
onward; in the sense that ...; at least; it would seem reasonable; if
valid.

VI. Find in the text the adverbs that end in -ly and adverbs that don’t
end in -ly. Think of some examples of such adverbs.

VII. Give antonyms of the following words:
finite, useless, to converge, regularly, reasonable, successful, known,

divisible, addition, multiplication, to discover, to appear.

VIII. The following suffizes are used to form different parts of speech.

nouns — -ment, -ness -sion -tion
-ty -al

adjectives —  -ful -ic -able -ous
-y -ive  -al

verbs — -ize/ise

The words below have all appeared in the text. Use your dictionary
to find the other parts of speech, their translation and pronunciation.
The above suffizes are used (but not always):

difference, to converge, to surprise, addition, to succeed, to construct,
product, divisible, to prove, to communicate, to discover, correspon-
dence, reasonable, to contradict, difficult, multiplication, to express,
existence, statement, variable, important, equal.

IX. Use either among or between in these sentences: Note that
we commonly use between to show a division between two people,
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things or times, e. g. ‘Divide this between you both’. We use among
to refer to a mass of people, things, etc., e.g. ‘Were you among the
people present?’

1. Brun succeeded in showing that — such numbers there are infinitely
many twins.

2. Bertrand observed that — a and 2a there always is a prime number.
3. The lines were drawn — two corresponding dots to indicate the
cancellation.

4. — all the ordinary fractions there are many that are equal.

5. On closer examination of these two sequences we see that there is
indeed a relation — them.

Grammar

X. Rewrite these questions with the words provided.

1. Does the arithmetic progression of second order contain an infinite
number of primes?

We want to know ...

2. Are there an infinite number of twin primes?

It is interesting to know ...

3. Are there arbitrarily large gaps in the sequence of primes?

Now we should answer the question ...

4. Can he prove that every even number can be written as the sum of
two primes?

In a letter to Euler, a Russian named Goldbach asked ...

5. Can a smaller interval be assigned in which we can always find at
least one prime?

It would seem reasonable to ask ...

6. Is the inequality a®> < p < (a + 1)? valid for all a?

We would like to know...

XI. Supply comparative or superlative forms. Then check against the
text.

1. Such twin primes are (scarce) than prime numbers.
2. The (good) result in this direction was obtained by V. Brun.
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3. We know that the primes become (dense) as we go to (high) num-
bers.

4. The same result could be obtained from the product of all primes
(little) than 1000.

5. This (weak) proposition does not imply the Goldbach conjecture.
6. Here we have a statement about all odd numbers (great) than M.
7. Now it would seem reasonable to ask if a (small) interval can be
assigned.

XII. Rewrite the sentences using Subjunctive Mood.

1. They convinced him that it was useless to employ the Sieve of
Eratosthenes to prove propositions on prime numbers.

2. The same result can be obtained from the product of all the primes
less than 1000.

3. If we add 2,3,4,5,...,1000 successively to N, we will have again 999
consecutive non-prime numbers.

4. If the Goldbach conjecture is true, then adding 3 to every even
number we have: Every odd number can be expressed as the sum of
three primes.

5. Even if it is valid, still some even numbers may not be expressible
as the sum of two primes.

6. It seems reasonable to ask if a smaller interval can be assigned in
which we can always find at least one prime.

7. If for large numbers the inequality is valid it will assign a rela-
tive interval in which we can find a prime much smaller than that of
Bertrand’s Postulate.

XIII. Rewrite these sentences with suitable forms of seem.

1. The answer is beyond our present strength.

2. No one knows it.

3. The fact that he was isolated from other mathematicians favored
his work.

4. This was not completely proved.

5. These things are beyond experimental verification.

6. We cannot check it.

7. The primes are distributed irregularly.
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8. The essential idea was developed in Alexandria in the Third Century
B.C.

XIV. Supply Present Perfect of the verbs given in brackets.

1. No one (ever to find) an even number contradicting the Goldbach
conjecture.

2. This (not to prove) completely by anyone yet.

3. We (to notice) that the primes seem to be distributed irregularly.
4. This is known as Bertrand’s Postulate and (to prove) by rather
elementary means.

5. A more serious objection is that we (to use) the notions of infinite
series and products and the notion of a limit, none of which are ele-
mentary.

6. So far we (to speak) only of finite sets.

7. We (already to set forth) a first axiom of the theory of probability,
namely m(u) = p(u) = 1.

8. Thus we (to transform) the problem into the much simpler one.

Writing

XV. There are many different ways of expressing cause and effect, the
text under consideration gives some of them. 1 Look through it again
and pick out all the linking words used for these purposes. 2 Make a list
of them and add some more examples. 3 Choose one of the theorems
you know and prove it in writing, using linkers of the above type.

Supplementary Texts
Text 1

Euler’s proof of the infinity of primes provides the motivation for
Dirichlet’s proof of the theorem that in every arithmetic progression
there is an infinity of primes. This last theorem is much too difficult
to consider here.

Up to now everything has been proved before our eyes.

A list of primes less than 10000000 has been computed by D. N.
Lehmer (1956). How are such lists prepared? The essential idea seems
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to have been developed in Alexandria in the Third Century B. C., for
it is attributed to Eratosthenes (ca. 250 B. C.) and does not appear
in Euclid. Let us write down the list of integers:

1,2,3,4,5,6,7,8,9,10,11,12, 13,14, 15,16, 17, ... .

First we cross out 2 and all its multiples. The first number, always
excluding 1, which is not hit is a prime, for it has no lower divisor.
This is 3. So we strike out 3 and its multiples. The next uncancelled
number, 5, is prime, having no smaller factor. Eliminating the mul-
tiples of 5, we find that 7 is a prime, etc. This purely mechanical
method is known as the Sieve of Eratosthenes. It depends not upon
the numbers themselves, but rather on their position in the sequence
of the integers.

We may think of the row of equally spaced dots in Plate 1 as being
continued indefinitely to the right. These we can number, calling the
first one 0, the next, to the right, 1, the next 2, etc. The method
sketched above is applicable to these dots.

il l‘ll AR

N o wWwowN

13

Plate I

Let us cross out every other dot, starting with 0 — a mechanical
process. (In Plate 1 to avoid confusion this has been done in a second
row and lines have been drawn between corresponding dots to indicate
the cancellation.) Next we strike out the dots whose distance from the
origin is a multiple of the distance of the first dot, excluding always,
0 and 1, not previously cancelled. This yields line 3, and repeating
the process gives line 5. Stepwise we eliminate all dots that are at
multiples of the distance or some previous dot from the origin and
find at the end of each step that the first uncancelled dot corresponds
to a prime number. Thus it is clear that the Sieve of Eratosthenes
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depends upon the position of the integers in sequence rather than on
35  the properties of the numbers themselves. This method was the basis
on which Lehmer’s list of primes was computed.
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Reading
1. Pre-reading questions:

1. What rules of operations performed on numbers do you know?
2. What are fractions?

I1. Read the text. Try to guess the meaning of the words which you
probably don’t know. Then consult your dictionary if necessary.

Text

In order to introduce common fractions into our number system, we
take for granted that we know all the integers, positive and negative,
the operations, addition and multiplication, that we can perform on
them, and the rules by which we may combine these operations. As we
become more sophisticated in mathematics, we find a need to enlarge
our number system — from the integers to the rational numbers, to
the irrational numbers, and to the complex numbers. But this is a
heuristic approach; whereas a more formal approach is desirable in
order to show that the operations performed with fractions fit the
same pattern as the operations with integers.

What are these rules of operation that we take for granted? They
seem to have been first enumerated by the Irish mathematician William
Hamilton.

We have a commutative law:
for addition: a + b = b+ a,
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for multiplication: ab = ba;

an associative law:

for addition: a+ (b+c¢) = (a+b) + ¢, for multiplication: a(bc) = (ab)c;
(the associative law for addition is merely codification of the fact that
we can only add two numbers together, e.g., the method we use in
adding long columns of numbers);

and a distributive law: a(b+ ¢) = ab + ac,

which connects addition and multiplication. This last law is clearly
of a different nature from the first two in which we pass from the law
for addition to the law for multiplication by replacing the plus sign by
a dot. If we apply this replacement to the distributive law, we have
nonsense: a+ (bc) # (a+b)(a + ¢). The usual rule of multiplication is
a clear application of the distributive law.

Finally we have a law of cancellation:
for addition: if a + b = a + ¢, then b = ¢,
for multiplication: if ab = ac, and if a = 0, then b = c.

In addition to these laws we have two invariants, one for each ope-
ration: for addition: zero, i.e., a + 0 = a,
for multiplication: one, i.e., a-1 = a.

The foregoing are postulates and from them we can derive the
other familiar rules of arithmetic. For example we have as a theorem:
a-0=0.

Proof.

ab = a(b+ 0) (the invariant for addition),
but a(b+0) =ab+a-0or

ab = ab+ a - 0 (the distributive law)
whence a -0 = 0 (the law of cancellation).

Knowing the integers and having these rules of operation in mind,
we may now introduce fractions as an ordered pair of integers (al|b),
where b # 0. In this ordered pair a plays the conventional role of the
numerator, while b plays the role of the denominator. We introduce
purposely a new symbol (a|b) in order to be sure that we do not inad-
vertently make use of the rules of fractions which we are now going to
introduce.

Definitions
Multiplication of Fractions: (a|b)(c|d) = (ac|bd),

Addition of Fractions: (ab) + (c|d) = (ad + bc|bd).
In addition to these two operations we need an equivalence relation
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— when are two pairs of numbers equal — for among all the ordinary
fractions there are many that are equal, e.g.
Definition. Equivalence of Fractions: (a|b) = (c|d), if and only if
ad = be.
This definition of equivalence is based on the known operations of the
integer realm and reduces the decision of equivalence to a question
therein.
An equivalence relation must have three properties:
1. Reflexivity: every pair must be equal to itself. (a|b) = (a|b)
implies ab = ba which is true in the integer realm.
2. Symmetry: if a pair is equal to a second, the second pair
is equal to the first. (a|b) = (c|d) implies ad = bc which can
be written as ¢b = da. But the latter is merely the integer
formulation of (c|d) = (a|b).
3. Transitivity: if a pair is equal to a second, and the second
is equal to a third, then the first pair is equal to the third. If
(alb) = (c|d) and (c|d) = (e|f), then (a|b) = (e|f). These imply

ad = be, cf = de,

adf = bef, bef = bde,

whence

adf = bde,
and by cancellation (since d # 0)

af = be,

so that (a|b) = (e|f). And we have shown that our proposed equiva-
lence relation indeed does have the properties required of it.

In so defining equivalence between fractions, we have divided them
into classes such that % and % belong to the same class. Here the
essential difficulty with fractions is exhibited, namely that we have no
unique notation for the classes.

Suppose that we have two fractions of the same class, i.e., (alb) =

(a'|b"); then it would seem reasonable to assert that (a|b)(c|d) = (a'|b’)(c|d),

or multiplication by a member of a class is equivalent to multiplica-
tion by any other member of the same class. (a|b) = (a'|b') implies
that ab’ = a'b; and we must show that (a|b)(c|d) = (a'|b")(c|d), or
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(aclbd) = (a'c|b'd), which implies that acb'd = a'cbd. But this last
relation holds in the realm of integers.

Likewise, we could show that the addition of a member of a class
is equivalent to the addition of any other member of the same class.
And similarly, the commutative, associative, and distributive laws also
hold for fractions as we have defined them. These are left as exercises.

Like 0 among the integers there is a class of fractions invariant with
respect to addition, namely (0]a) = (0]b) = (0|1), provided that a and
b are not zero. To show this we note that (a|b)+ (0|d) = (ad+b-0|bd) =
(ad|bd) = (alb), for the last equality implies adb = bda. Similarly we
find a class of fractions invariant with respect to multiplication, namely
(ala) = (blb) = (1]1), provided a and b are not zero, for (a|a)(b|c) =
(ablac) = (blc).

Now we can show that there is a fraction (z|y) such that (a|b)(z|y) =
(c|d), provided that neither a, b or d are zero. (a|b)(z|y) = (az|by) =
(c|d) can be fulfilled by axz = kc and by = kd. If we put k = ab, so that
ax = abc and by = abd, then by the law of cancellation we have x = bc
and y = ad. Thus the fractions always permit division, provided that
of all the terms only the first term of the dividend may be zero.

I11. Give your ideas.

. What is a number system?

. Enumerate the main laws of operations on integers.

. Give the definition of equivalence.

. What are the three properties of an equivalence relation?

. Comment on the statement: ‘The fractions always permit division.’

Uk W N

IV. What do the words in italics refer to ¢ Check against the text.

1. ... we can perform on them ... (line 3)
2. This last law is clearly of a different nature from the first two (line
23).

3. If we apply this replacement to the distributive law, we have non-
sense. (line 26)

4. Knowing the integers and having these rules of operation in mind,
we may now introduce fractions as an ordered pair of integers. (line
43)
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5. In so defining equivalence between fractions, we have divided them
into classes. (line 80)

Vocabulary

V. Give the Russian equivalents of the following expressions:

in order to; to take for granted; to become more sophisticated in;
the same pattern; to be of a different nature from; the foregoing are
postulates; to have something in mind; to make use of; in addition; if
and only if; a question therein; it would seem reasonable; these laws
hold for ...; with respect to; provided that.

VI. Supply with between or among:

1. — all the ordinary fractions there are many that are equal.

2. In so defining equivalence — fractions, we have divided them into
classes.

3. Like 0 — the integers there is a class of fractions invariant with
respect to addition.

4. — these fractions there is a subset of classes.

5. Now we can show the difference — these two numbers.

VII. Supply prepositions. Then check against the text.

1. We know all the integers and the operations that we can perform
— them, and the rules — which we may combine them.

2. We find a need to enlarge our number system — the integers — the
rational numbers.

3. The associative law — addition is merely codification — the fact
that we can only add two numbers, e.g., the method we use — adding
long columns — numbers.

4. This last law is clearly — a different nature — the first two —
which we pass — the law — addition — to law — multiplication —
replacing the plus sign — a dot.

5. This definition — equivalence is based — the known operations —
the integer realm and reduces the decision — equivalence — a question
therein.
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6. Every pair must be equal — itself.

7. We have divided them — classes.

8. Multiplication — a member — a class is equivalent — multiplication
— any other member — the same class.

VIII. Translate into Russian the following pairs of nouns:

number system; equivalence relation; integer realm; integer formu-
lation; continuity axiom; right-hand corner; vector geometry; vector
addition; zero vector; circle tangent.

IX. Pay attention to the use of another, other/others, the other.

The meaning of another:
one more in addition to the
one(s) already mentioned.
The meaning of other/others
(without the): several more
in addition to the one(s)
already mentioned.

The students in the class come
from many countries. One of them
is from Great Britain. Another
student is from France. Another is
from Germany. Other students
are from Brazil. Others

are from Japan.

The meaning of the other(s):
all that remains from a given
number; the rest of a specific

group.

1) I have three books. Two are
mine. The other book is yours.

The other is yours.

2) I have three books. One is mine.
The other books are yours.

The others are yours.

Another is used with expres-
sions of time, money and
distance, even if these expres-
sions contain plural nouns.

1) I will be there for another
three years.

2) I need another five dollars.
3) We drove another ten miles.

Every other gives the idea of
‘alternate’.

1) Please write on every other
line.
2) 1 see her every other week.

The other day can mean a few
days ago.

I met my friend the other
day (=a few days ago).

Supply the following sentences with another, other, others, the
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other.

1. The foregoing are postulates and from them we can derive all —
familiar rules of arithmetic.

2. Multiplication by a member of a class is equivalent to multiplication
by any — member of the same class.

3. Now let us consider — Euclid’s postulate.

4. a and b have no common divisor — than +1.

5. Thinking over — examples, we see that this is impossible.

6. If there are two systems which satisfy all the axioms which we list,
then one system is simply a copy of — .

7. Numbers, addition and all — mathematical concepts can be defined
in terms of this single notion.

8. Now we shall prove — theorems about natural numbers.

9. If z is a number, then £ — 1 is — number which is smaller.

10. Some problems are quite difficult, — are rather easy.

Grammar

X. Ezxplain the use of the verb to do in these sentences.

1. We have shown that our proposed equivalence relation indeed does
have the properties required of it.

2. Our language does have remnants of other systems of notation.

3. We do now know that this is true.

XI1. What is the meaning of provided in these sentences?

1. ... there is a class of fractions invariant with respect to addition,
namely (0]a) = (0]b) = (0]1), provided that a and b are not zero.

2. ... there is a fraction (z|y) such that (a|b)(z|y) = (c|d), provided
that neither a, b, or d are zero.

3. The fractions always permit division, provided that of all the terms
only the first term of the dividend may be zero.

XII. Combine modals with the verbs in brackets.
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1. ... we know all the integers, positive and negative, the operations,
addition and multiplication, that we — (to perform) on them, and the
rules by which we — (to combine) these operations.

2. The associative law for addition is merely codification of the fact
that we — (to add) two numbers together.

3. The foregoing are postulates and for them we — (to derive) the
other familiar rules of arithmetic.

4. Knowing the integers and having these rules of operation in mind,
we — (to introduce) fractions as an ordered pair of integers.

5. An equivalence relation — (to have) three properties.

6. Every pair — (to be) equal to itself.

7. (alb) = (c|d) implies ad = be which — (to be) written as cb = da.
8. Now we — (to show) that ... .

9. The fractions always permit division, provided that of all the terms
only the first term of the dividend — (to be ) zero.

XIII. Supply the right finite and non-finite forms of the verbs in brack-
ets.

1. They (to seem, to enumerate) first by the Irish mathematician
W.Hamilton.

2. (to know) the integers and (to have) these rules of operation in mind,
we may now introduce fractions as an (to order) pair of integers.

3. This definition of equivalence (to base) on the (to know) operations
of the integer realm and (to reduce) the decision of equivalence to a
question therein.

4. We (to show) that our (to propose) equivalence relation indeed does
(to have) the properties (to require) of it.

5. In so (to define) equivalence between fractions, we (to divide) them
into classes.

6. Here the essential difficulty with fractions (to exibit).

7. The commutative, associative and distributive laws also (to hold)
for fractions as we (to define) them. These (to leave) as exercises.

8. It can (to fulfill) by az = kc.

9. We find after (to complete) the operation, that the correspondence
(to preserve).

XIV. Use Subjunctive Mood in the following sentences.
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1. Tt (to seem) reasonable to assert that (a|b)(c|d) = (a'|b")(c|d).

2. If there (to be) a last prime P, then the right-hand side (can, to
have) only a finite number of factors and the value (to be ) definitely
finite. But this is impossible.

3. We (may, to go) deeper into the theory of probability, but we content
ourselves with the exposition of these four postulates.

4. What (to happen) if we (to cut) these circles by a horizontal line?
5. If we (can, to show) that this last infinite sequence of points lay
in the finite part of the planes, then clearly the Bolzano-Weierstrass
theorem (to be) applicable and we (to be sure) that they had at least
one limit point.

6. In more detail, we (may, to phrase) the reasoning as follows.

7. We shall use letters ‘x’, ‘y’, etc. as if they (to be) names.

8. If we shift the whole plane 3 units to the right and then shift it 4
units up, we have it in a new position which we (can, to put) it in with
one shift. What single shift (to do) it?

Writing

XV. There are many reasons to show how ideas are related in scientific
discourse. The following linking words are used to express the compar-
ison of like items: similarly, likewise, in the same way, more-
over, also, furthermore, besides. Linking words that show con-
trast include although, but, however, in contrast, on the other
hand, even though, nevertheless, on the contrary, yet, in spite
of, despite.

1. Look through the text again to find the sentences, if any, that contain
linking words of the above type.

2 Write a paragraph of comparison or contrast on one of the points of
the text.

Supplementary Texts
Text 1

In mathematics, we frequently classify things and then single out from
each class an element, called the reduced element, to stand for the
whole class. This process proves so useful that when it is impossible to
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exhibit a method for finding a reduced element, to avoid the difficulty
we postulate the existence of such an element as in the axiom of choice
in the theory of sets.

Our classes consist of equivalent fractions ((a|b) = (c), if and only
if ad = be) and we choose as the reduced element that pair of the class
which has the smallest positive second element (denominator). Of all
the fractions of a class, only one can be the reduced element. (Suppose
there were two, then (alb) = (c|b), as they must have the same second
element, which implies ab = ¢b, so that a = ¢.) We do not need to make
an involved proof of the existence of the reduced pair. Suppose we have
our class of fractions in a bag. Pulling one from the bag we note its
denominator. If it is negative, changing the signs of both members of
the pair will give us a fraction with positive denominator which also
belongs to our class. Now we have only to make a finite number of
comparisons to determine if a smaller positive number can serve as
a denominator of a fraction of our class. Since there can be only a
finite number of smaller denominators, we can certainly determine the
smallest by inspection. When only a finite number of objects are to
be compared, inspection is indeed a legitimate and feasible method
of mathematical proof. Thus we can always find one fraction, (al|b),
the reduced element of the class, such that b is the smallest positive
denominator of the equivalent fractions.

In what sense does this element represent the class? We shall show
that if (a|b) is the reduced fraction of a class and (c|d) belongs to the
same class, then (c|d) = (ka|kb).

Consider (alb) = (c|d), where b > 0, d > 0 and d > b, where b
is the smallest positive denominator of all equivalent fractions. (c|d)
is a fraction different from (a|b), only if d > b; for if d = b, then
a = ¢ as ad = bec = dc. So let us suppose definitely that d > b.
Performing division we have d = ¢b + r, where 0 < r < b. (Note the
curious specification of the remainder r — zero is excluded, while b is
included as a possible value.) Set ¢ = ga + s, where ¢ is defined by
the previous division. We know that (a|b) = (c|d) = (ga + s|gb + ),
implying that a(gb+ r) = b(qa + s), or ar = bs: whence (a|b) = (s|r).
But as b was the smallest positive denominator contained in the class,
it is impossible that r be different from b, i.e., r = b. This implies
that d = ¢b+ b = (¢ + 1)b. Now we must show that s = a; but this
follows from (a|b) = (s|r) = (s|b), so that ¢ = (¢ + 1)a. And thus
(cld) = ((¢ + Dal(g + 1)b) = (ka|kb).
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Text 2

We have defined the reduced fraction as the member of the class that
has the smallest positive denominator, and we have shown that any
other member of the class is merely an amplification of the reduced
fraction in which the numerator and denominator are both multiplied
by the same factor. This leads naturally to another definition of the
reduced fraction, one that is more convenient: (a|b) is reduced if and
only if a and b have no common divisor other than +1. We must show
this to be equivalent to the first definition. First suppose that a and
b have a common divisor, i.e., a = da, b = 3, where § # £1. Then
(alb) = (6|6B) = (aB), b > B, so that (a|b) is not a reduced fraction
in the old sense. Conversely, if ¢ and d have no common divisor,
then (c|d), d > 0, must be a reduced fraction. Indeed, if it were not
reduced, then there would be another specimen in the same class with
a smaller positive denominator, say (alb). But we just showed that
(c|d) = (ka|kb) and by hypothesis k = £1, so that (c|d) is in fact the
reduced fraction.

The notion that a and b have no common divisor is perhaps more
familiarly expressed by saying that the fraction is in lowest terms. For
example, consider

31759 ---

112753 ...

which may or may not be in lowest terms. Why should it be impossible
that two fractions, both in lowest terms, should be equal? Thinking
over the example, what it implies in the realm of integers, we see
that this impossibility is equivalent to the theorem on the uniqueness
of prime factorization of a number. Thus our next goal will be to
establish this in full. To this end we shall use the previous result to
prove Euclid’s lemma.

Suppose a and b are coprime, i.e., (a,b) = 1 and suppose a divides
the product bc, then a divides c¢. Let us write out what a divides bc
means. That is bc = ad, or ad = bc, which can be written in fractional
notation as (alb) = (c|d), where (a|b) is a reduced fraction. Hence
¢ = ak, or c is divisible by a.

By a specialization of Euclid’s lemma we have: If p is a prime, and
p divides be, then p divides either b or c.

1) Suppose p divides b, then the theorem is true.
2) Suppose p does not divide b, then (p,b) = 1, for 1 is a divisor of
both and p has only two divisors, 1 and p, so that (p,b), the greatest
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common divisor, is in fact equal to 1. Hence by Euclid’s lemma p
divides c.

But this is tantamount to the theorem on the uniqueness of prime
factorization of integers, being the essential theorem used in the proof
of that important proposition.
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Reading

1. Pre-reading questions:

1. What are two-dimensional vectors?
2. What do the terms real and complex numbers mean?

I1. Read the text. Make a list of unknown words. Consult your dictio-
nary for their meaning and pronunciation.

Text

We turn to the problem of defining a ‘good’ multiplication for vectors.
We have defined the scalar product of a scalar and a vector, which
yields a vector, and we have defined the inner product of two vectors,
which yields a scalar, but we have not defined a multiplication of two
vectors which yields a vector. In this section we define such a mul-
tiplication for 2-dimensional vectors, and we shall later see that this
multiplication has interesting applications in the problem of solving
equations.

There is, unfortunately, a plethora of notation in mathematics.
Two-dimensional vectors are usually called complex numbers in cir-
cumstances where one is likely to multiply them. Formally:

DEFINITION. A complex number is a 2-dimensional vector; that
is, a complex number is an ordered pair of numbers. A real number is
a number. That is, what we have simply called a number up to now,
will be called a real number to distinguish it from a complex number.
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Thus (1,2) is a complex number and 2 is a real number. The
terminology is, of course, historical; in problems concerned with scalar
multiplication a number is called a scalar, and in problems concerned
with what we shall call complex multiplication a number is called a real
number. The adjective ‘real’ is not supposed to imply that complex
numbers are hallucinatory. We now compound the semantic confusion.

DEFINITION. The real part of a complex number is its first coordi-
nate; the imaginary part of a complex number is its second coordinate.

Thus 2 is the real part of (2,3), and 3 is the imaginary part of (2,3).
(Don’t ask me what is imaginary about 3.) In line with this interesting
terminology, the z-axis is frequently referred to as the real axis, and
the y-axis as the imaginary axis.

The standard way of writing complex numbers is as the sum of
scalar multiples of two particular complex numbers. We define:

DEFINITION. I = (1,0) and i = (0,1).

In other words, I is the unit vector in the z-direction and i is the
unit vector in the y-direction. If (a, b) is an arbitrary complex number,
it is evident that (a,b) = a(1,0) +b(0,1) = al + bi, where the addition
is the usual vector addition. Conversely, if ¢ and d are real numbers,
then cI+di = (¢,d). Thus the real part of cI+di is ¢ and the imaginary
part is d; for example, the real part of 21 + 7i is 2 and the imaginary
part is 7. On the other hand, the real and imaginary parts determine
the number; if the real part of A is 4 and the imaginary part is 3, then
A=4I+3i=(4,3).

There is one other notational matter which must be explained. It
is customary, in discussing complex numbers, to suppress the symbol
‘I’ entirely and, for example, to write (2,3) as 2 + 3i. We make the
convention:

CONVENTION. If a and b are real numbers, then a+bi = al +bi =
(a,b).

We should not gloss over the fact that this convention may cause
confusion. It is usual to write (4,0) as 41 + 0i, or 4+ 04, or simply as 4.
But this is inconsistent; if we write ‘4’, are we to mean the real number
4 or the complex number (4,0)?7 We can only say, rather lamely, that
the context should make clear which usage is meant; if we say ‘the
complex number 4’ we certainly mean (4,0), and the real number 4 is
just 4.

All of these notational devices may tend to obscure some of our
hard-won knowledge. If two complex numbers are equal, then their real
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parts (first coordinates) are equal and their imaginary parts (second
coordinates) are equal, and, conversely, if the real and imaginary parts
of two complex numbers are equal, then the numbers are equal. Thus,
if  and y are real numbers such that 2z + yi = 4 — 3i, then we infer
that 2z =4 and y = —3.

Finally, we come to the definition of complex multiplication. First,
we want the product of the complex numbers a + 0i and ¢ + di to
be ac + adi. In other words, multiplication by (a,0) is to be scalar
multiplication by a. Second, we want all of the algebraic axioms for real
numbers to be satisfied by complex numbers. Stated more precisely,
if ‘number’ is replaced by ‘complex number’ in each of the axioms Al
— A5, M1 — M5, D and AM we want the resulting statements to be
theorems.

III. Comment on these statements.

1. There is, unfortunately, a plethora of notations in mathematics.
2. The context should make clear which usage is meant.

Vocabulary

IV. Give the Russian equivalents of the following expressions:

to be likely to; that is; up to now; problems concerned with ...; in
line with ...; is referred to as ...; in other words; on the other hand;
it is customary; it is usual to ...; this is inconsistent; rather lamely;
to make clear; hard-won knowledge; and conversely; stated more pre-
cisely.

V. Join these notes to make sentences. Then check against the text.

1. We turn — the problem — defining a ‘good’ multiplication —
vectors.

2. — this section — define such — multiplication — 2-dimensional
vectors.

3. The standard way — writing complex numbers is — the sum —
scalar multiples — two particular complex numbers.

4. All — these notational devices may tend — obscure some — our
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hard-won knowledge.

5. Finally we come — the definition — complex multiplication.

6. — other words, multiplication — (a,0) is — be scalar multiplication
— a.

7. We want — of — algebraic axioms — real numbers — be satisfied
— complex numbers.

V1. Suggest meanings for one in these sentences.

1. Two-dimensional vectors are usually called complex numbers in cir-
cumstances where one is likely to multiply them. (line 10)

2. There is one other notational matter which must be explained. (line
40)

VII. Supply the following sentences with what or that.

1. We shall later see — this multiplication has interesting applications
in the problem of solving equations.

2. — we have simply called a number up to now, will be called a real
number to distinguish it from a complex number.

3. In problems concerned with — we shall call complex multiplication
a number is called a real number.

4. The adjective ‘real’ is not supposed to imply — complex numbers
are hallucinatory.

5. Don’t ask me — is imaginary about 3.

6. We can only say — the context should make clear which usage is
meant.

7. Then we infer — 22z =4 and y = —3.

8. If z and y are real numbers such — 2z + yi = 4 — 3i.

Grammar
VIII. Supply the right forms and tenses of the verbs in brackets, then

refer to the text. In each case give your reason for the form you have
chosen.

1. We (define) the scalar product of a scalar and a vector, which
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(vield) a vector, and we (define) the inner product of two vectors,
which (yield) a scalar, but we (not, define) a multiplication of two vec-
tors which (yield) a vector.

2. We (see) later that this multiplication (have) interesting applica-
tions in the problem of (solve) equations.

3. Two-dimensional vectors usually (call) complex numbers.

4. What we (call) simply a number up to now, (call) a real number
(distinguish) it from a complex number.

5. In problems (concern) with scalar multiplication a number (call) a
scalar, and in problems (concern) with what we (call) complex multi-
plication a number (call) a real number.

6. The z-axis frequently (refer) to as the real axis.

7. ‘Number’ (replace) by ‘complex number’ in each of the axioms.

IX. Combine modals and their equivalents must, may, should, can,
to be to with the verbs in brackets. Check against the text.

1. There is one other notational matter which — (to explain).

2. We — (not to gloss) over the fact that this convention — (to cause)
confusion.

3. If we write ‘4’, — we (to mean) the real number 4 or the complex
number (4,0)?

4. We — only (to say) that the context — (to make) clear which usage
is meant.

5. All of these notational devices — (to tend) to obscure some of our
hard-won knowledge.

6. Multiplication by (a,0) — (to be) scalar multiplication by a.

X. In which sentence can you insert the words in order before the
italisized Infinitive to express the purpose?

1. It is customary, in discussing complex numbers, to suppress the
symbol ‘T’ entirely and, for example, to write (2,3) as 2 + 3i.

2. What we have simply called a number up to now, will be called a
real number to distinguish it from a complex number.

3. All of these notational devices may tend to obscure some of our
hard-won knowledge.

4. To satisfy curiosity we state here Fermat’s Last Theorem.
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5. To introduce common fractions into our number system we take
for granted that we know all the integers, the operations that we can
perform on them and the rules to combine these operations.

6. We introduce purposely a new symbol (a|b) to be sure that we do
not inadvertently make use of the rules of fractions which we are now
going to introduce.

7. It would seem reasonable to assert that multiplication by a member
of a class is equivalent to multiplication by any other member of the
same class.

8. A more formal approach is desirable to show that the operations
performed with fractions fit the same pattern as the operations with
integers.

XI. Rewrite these sentences beginning with the words we want using
Complex Object. Then check against the text.

1. The product of the complex numbers a + 07 and ¢ + di is ac + adi.
2. All of the algebraic axioms for real numbers are satisfied by complex
numbers.

3. The resulting statements are theorems.

XII. Pay attention to the use of Complex Subject in these examples.
Think of other sentences with this construction.

1. Two-dimensional vectors are usually called complex numbers in
circumstances where one is likely to multiply them.

2. The adjective ‘real’ is not supposed to imply that complex numbers
are hallucinatory.

3. The essential idea seems to have been developed in Alexandria in
the Third Century B.C.

XIII. Make these sentences interrogative.

1. There is a plethora of notation in mathematics.

2. There is one other notational matter which must be explained.

3. There is a very nice exposition of this construction in Landau’s
work.

4. In every arithmetic progression there is an infinity of primes.
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5. There can be only a finite number of smaller denominators.
6. If the fraction were not reduced, then there would be another spe-
cimen in the same class with a smaller positive denominator.

XIV. Give the proper forms (ing-form or Past Participle) of the verbs
in parentheses.

1. We turn to the problem of (to define) a ‘good’ multiplication for
vectors.

2. In problems (to concern) with scalar multiplication a number is
called a scalar, and in problems (to concern) with what we shall call
complex multiplication a number is called a real number.

3. The standard way of (to write) complex numbers is as the sum of
scalar multiples of two particular complex numbers.

4. It is customary in (to discuss) complex numbers to suppress the
symbol ‘I’ entirely and, for example, to write (2, 3) as 2 + 3i.

5. (to state) more precisely, it means that if ‘number’ is replaced
by ‘complex number’ in each of the axioms, we want the (to result)
statements to be theorems.

6. (to use) ruler and compass, construct the tangent to P at (3, 2).
7. Derive a theorem analogous to this one for the parabola (to describe)
in the problem above.

8. Prove Heron’s Theorem (to use) elementary (non-vector) geometry.
9. Assume here that the tangent to an ellipse at a (to give) point is
the unique line (to intersect) the ellipse only at that point.

Writing

XV. In scientific writing you should add details if you think the people
who read your paper won’t understand the main idea without more
explanation. Some expressions used for this purpose are: in other
words, to put it differently, that is to say, by ... we mean, by
...18 meant.

1. Now look through the text again to see if there are sentences con-
taining linkers of the above type.

2. Write a paragraph on one of the points under consideration in the
text. Begin with a topic sentence and then add some details that would
make your idea clear.
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Supplementary Texts

Text 1

This section is devoted to a study of those properties of 2-dimensional
vector space which do not extend to 3-space, the primary purpose
being to define and exploit a multiplication of 2-dimensional vectors.
We begin the study by considering the solutions of equations. Linear
equations are easily disposed of, but the situation is a little more com-
plicated for quadratic equations. If a,b, and ¢ are numbers and a is
not zero, then it may or may not happen that there is a number x
such that az? + bz + ¢ = 0. For example, it is easy to see that there
is no number x such that 2> + 1 = 0, although there certainly is a
number z such that z2 — 1 = 0. We construct a multiplication for
2-dimensional vectors such that there is a 2-dimensional vector A with
the property that the vector sum of A? and the multiplicative iden-
tity is the zero vector, and in this sense, we obtain a solution of the
equation 2 + 1 = 0. We shall call 2-dimensional vectors ‘complex
numbers’ and, to emphasize the difference between numbers and com-
plex numbers, we call the ordinary numbers ‘real’. Thus it will appear
that, whereas there are no real numbers x such that 22 + 1 = 0, there
are complex numbers with this property. (We have just given a more
precise statement of this fact.)

We consider briefly two topics other than the algebraic and geomet-
ric properties of complex numbers. Parabolas are closely connected
with quadratic functions, and I've succumbed cheerfully to the temp-
tation to exhibit some of the beautiful geometry of the parabola.

It may be wise to mention, in concluding, something of the use-
fulness of the algebra of 2-dimensional vectors. There is a large and
beautiful mathematical theory, called the theory of complex functions,
which is based on complex numbers. This theory was constructed just
as an abstract mathematical creation more than a half century before
alternating electric current was first generated, and much before the
first airplane was flown. Yet it has turned out that the theory of com-
plex functions is precisely the mathematical tool needed to study the
transmission of alternating current or to design an airfoil for subsonic
flight. There are other equally startling applications.
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Text 2

Any number which can be found as a point on the number scale ex-
tending from —oo to +o0o (an indefinitely long straight line with some
fixed point 0 used as the zero mark, and a convenient scale to represent
one unit) is known as a real number, and these are subdivided into ra-
tional and irrational numbers. A rational number is any number that
can be expressed in the form p/q, where p and ¢ are integers, and an
irrational number is any real number that cannot be expressed in this
form.

The square root of -1 is denoted by the symbol i (i = v/—1). The
value of this quantity cannot be determined as a real number, and
therefore the product of any real number and ¢, which also cannot be
placed on the number scale, is known as an #maginary number. From
this it can be seen that no real number, except zero, can be equal to
an imaginary number. (Zero is a neutral number and can be taken to
be real or imaginary.)

A complez number is the sum of a real number and an imaginary
number. Thus, if a and b be real numbers, a complex number will be
represented by a + ib, which is the standard form of representation. It
will have been found that complex numbers have arisen as the roots of
certain quadratic equations and, therefore, all the processes of algebra
are applicable to complex numbers.

It is to be noted that i> = —1, i® = —i, i* = 41, i®> = i, and these
values occur in cycles for higher powers of .

Text 3

Once the real number system is at hand. it is a simple matter to create
the complex number system. We shall indicate in this section how the
complex field can be constructed.

As seen before, the real number system is a field which satisfies cer-
tain additional properties. We constructed the Cartesian space RP and
introduced some algebraic operations in the p-fold Cartesian product
of R. However, we did not make RP into a field. It may come as a
surprise that it is not possible to define a multiplication which makes
RP, p > 3, into a field. Nevertheless, it is possible to define a multipli-
cation operation in R x R which makes this set into a field. We now
introduce the desired operations.
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DEFINITION. The complex number system C' consists of all or-
dered pairs (z,y) of real numbers with the operation of addition defined
by

(@,9)+(@y) =@+ y+y),

and the operation of multiplication defined by
(z,y) - (2',y") = (zz' —yy',zy’ + 2'y).

Thus the complex number system C' has the same elements as the
two-dimensional space R?. It has the same addition operation, but
it possesses a multiplication as R does not. Therefore, considered
merely as sets, C and R? are equal since they have the same elements;
however, from the standpoint of algebra, they are not the same since
they possess different operations.

An element of C' is called a complex number and is often denoted
by a single letter such as z. If z = (z,y), then we refer to the real
number z as the real part of z and to y as the imaginary part of z, in
symbols,

= Rez, y=1Imz.

The complex number zZ = (z, —y) is called the conjugate of z = (x,y).
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Reading

1. Pre-reading questions:

1. What do you know of P. de Fermat?
2. State Fermat’s Last Theorem.

I1. Read the text. Make a list of mathematical terms. If necessary
consult a special dictionary for their meaning and pronunciation.

Text

This is the famous Fermat-Euler theorem. If p is a prime, then for all
natural n n?~! can be divided by p, for example 10?7~ — 1 is divisible
by p, provided p # 2,5. This theorem was known to Fermat, one
of the very greatest mathematicians of the 17th century, if not of all
time — a jurist whose contributions to mathematics, his hobby, made
him immortal, whereas his jurisprudence is forgotten. Euler put the
theorem in its most general form, which we shall shortly produce, but
the essential idea is due to Fermat. Let us make a few examples.
Taking p as small as possible, i.e., 3, we have 102 — 1 = 99 is divisible
by 3; or for p = 7, we have 106 — 1 = 999999 is divisible by 7.

Here we have the special number 10 in our formula, as a result
of the fact that we used the decimal system to write our fractions.
However, the whole argument could be reproduced using a g-adic
number system, in which a8y means ag? + B¢ + v and, a3y means
ag™' + Bg~2% + vg~? defining periodic decimal fractions in the same
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way. (To the mathematician the discussion of these different number
systems isn’t very interesting, for they are merely notations that have
nothing to do with the fundamental nature of numbers. The one that
we use is merely a linguistic heritage — probably a biological accident
in that we have 10 fingers — although our language does have remnants
of other systems of notation, notably dozen, score, and gross.)

Thus we may replace 10 by any number coprime to b, and obtain:
g?®) — 1 is divisible by b, provided that g and b are coprime, the
Fermat-Euler theorem in its most general formulation. This theorem,
we see, provides the background for the systematic study of decimal
fractions.

To satisfy curiosity we state here Fermat’s Last Theorem. We could
show that there are infinitely many integers, the so-called Pythagorean
numbers, that satisfy the equation a? + b?> = ¢?, e.g., 3% + 42 = 52,
52 + 122 = 132, etc. Fermat claimed there were no integers satisfying
a™ +b" = ¢" for n > 2. We do now know that this is true for many
n, but it is still not proved in full generality. In part the interest of
the theorem lies in the provocative way in which it was first stated.
Fermat wrote the assertion on his copy of Diophantus together with
the remark, ‘... I have discovered a truly marvellous demonstration
which this margin is too narrow to contain.” However, the importance
of the theorem lies not in its content, but in the mathematics developed
in the attempts to prove it — the efforts to do so in the 19th century
yielded the new field of algebraic number theory and the notion of
ideal numbers developed first by Kummer.

In recent years some remarkable applications of the Fermat-Euler
theorem have come to light. It was a surprise to many people to learn
that a procedure was developed whereby a secret message could be
encoded and the person encoding the message would not be able to
reverse the process and decode the message.

III. Answer the questions:

1. Why is the famous Fermat-Euler theorem called so?

2. What is a number system we use?

3. Why is the Fermat Theorem so interesting and important?

4. What applications of the Fermat-Euler theorem do you know?
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5. ‘Fermat’s hobby made him immortal, whereas his jurisprudence is
forgotten’. Comment on this statement.

IV. What do the italicized words refer to?

1. This theorem was known to Fermat. (line 3)

2. The one that we use is merely a linguistic heritage. (line 18)

3. This theorem provides the background for the systematic study of
decimal fractions. (line 24)

4. We do now know that this is true, but it is still not proved in full
generality. (line 31)

5. The efforts to do so in the 19th century yielded the new field of
algebraic number theory. (line 38)

Vocabulary

V. Give the Russian equivalents of the following words and word com-
binations:

the formula reads; is divisible by; provided; the very greatest; if not of
all time; we shall shortly produce; is due to; let us; in the same way;
have nothing to do with; in part; too narrow; come to light; as follows;
let N be; at least; it takes a computer hundreds of years to factor N;
as shown above.

VI. What is the function of one in these sentences?

1. This theorem was known to Fermat, one of the very greatest ma-
thematicians of the 17th century.

2. The one that we use is merely a linguistic heritage.

3. To decode the message, one simply takes RP and computes the
remainder after dividing by N.

VII. Compare the meanings of italicized words in the following sen-
tences.

1. This theorem we see provides the background for the systematic
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study of decimal fractions.

2. If p is a prime, ¢(p) = p— 1, the formula reads 10P~! — 1 is divisible
by P, provided p # 2,5

3. Thus we may replace 10 by any number coprime to b, and obtain:
g% — 1 is divisible by b, provided that g and b are coprime.

VIII. What is the meaning of for in the sentences below? Give ex-
amples of other meanings of for that you know.

1. This theorem we see provides the background for the systematic
study of decimal fractions.

2. Assume for simplicity that N = p;ps, the product of two large
primes.

3. To the mathematician the discussion of these different number
systems isn’t very interesting, for they are merely notations that have
nothing to do with the fundamental nature of numbers.

IX. The words in the chart below have all appeared in the text. Use
your dictionary to find the other parts of speech, their translation and
pronunciation.

Noun Adjective Verb

— divisible —

— — to use

— — to reproduce
— — to mean
discussion | — —

— systematic | —

— general —

— — to define
idea — —

— remarkable | —
application | — —
surprise — —

— — to assume
product — —

— — to satisfy
— — to prove
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X Make adverbs of the following adjectives. Pay attention to their
spelling. Check against the text.

Short, mere, notable, infinite, true, real, exact, simple.

Grammar

XI. Join the notes with right forms of verbals. Then refer to the text.

1. (to take) p as small as possible, i.e. 3, we have ...

2. The whole argument could be reproduced (to use) a g-adic number
system.

3. Fermat claimed there were no integers (to satisfy) a™ + b™ = ¢" for
n > 2.

4. The importance of the theorem lies in the mathematics (to develop)
in the attempts to prove it.

5. The person (to encode) the message would not be able to reverse
the process and decode the message.

6. A person (to know) only N could never really determine ¢(IV).

7. Let E and D be two integers (to satisfy) ED = ¢(N) + 1.

8. As (to show) above, he cannot know D.

9. Let us assume he has a message M, (to give) in the form of a large
number.

10. Then R will be the (to encode) message.

XII. Supply the right active and passive forms and tenses of the verbs
in brackets.

1. This theorem (to know) to Fermat.

2. ... his hobby (to make) him immortal, whereas his jurisprudence
(to forget).

3. The whole argument could (to reproduce) using a g-adic number
system.

4. Thus we may (to replace) 10 by any number coprime to b.

5. ... it (not, to prove) in full generality.

6. In part the interest of the theorem (to lie) in the provocative way
in which it (to state).
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7. T (to discover) a truly marvellous demonstration which this margin
(to be) too narrow to contain.

8. In recent years some remarkable applications of the Fermat-Euler
theorem (to come) to light.

9. It was a surprise to many people to learn that a procedure (to
develop) whereby a secret message (can, to encode) and the person
encoding the message (to be able) to reverse the process and decode
the message.

10. The person encoding the message (to give) the numbers N and E.
11. This (to base) on the fact that ...

XIII. Use Present Perfect in the following sentences.

1. Fermat wrote, ‘... I (to discover) a truly marvellous demonstration
which this margin is too narrow to contain’.

2. In recent years some remarkable applications of the Fermat-Euler
theorem (to come) to light.

3. The rational numbers satisfy all of the axioms for numbers which
(to list) so far.

4. As we (to remark) already, it is possible to show that one system is
simply a copy of the other.

5. We (to finish) our review and restatement of elementary algebra
and are ready to study the topics which form the principal subject
matter of this course.

6. We (not to prove) from the axioms that every non-negative number
has a square root.

XIV. What is the function of the verb to do in these sentences?

1. ... although our language does have remnants of other systems of
notation, notably dozen, score, and gross. (line 20)

2. We do now know that this is true for many n, but it is still not
proved in full generality. (line 31)

XV. Use Subjunctive Mood in the following sentences.
1. The whole argument (can, to reproduce) using a g-adic number
system.

102



Unit 9

2. If p; and po are very large, then it (can, to take) a computer hund-
reds of years to factor N, and hence a person knowing only N (can
never, to determine) ¢(N).

3. A procedure was developed whereby a secret message (can, to en-
code) and the person encoding the message (not to be able) to reverse
the process and decode the message.

4. We (can, to show) that there are infinitely many integers.

Writing

XVI. 1. Give a brief oral summary of what you consider to be the
most important information in the text under discussion.

2. Take notes on the important information.

3. Use your notes to write a summary of the text.

After you have written your summary:
1. In groups, share what you have written.

2. Decide which is the best summary in your group.
3. Discuss the characteristics of a good summary.
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Reading
1. Pre-reading questions:

1. What is dynamics?
2. What do you know about Newton’s laws of motion?

I1. Read the text and try to guess the meaning of unknown words. Use
dictionaries if necessary.

Text

Dynamics is the branch of mechanics which deals with the physical
laws governing the actual motion of material bodies. One of the fun-
damental tasks of dynamics is to predict, out of all possible ways a
material system can move, which particular motion will occur in any
given situation.

Newton’s Laws of Motion

You are already familiar with Newton’s laws of motion. They are
as follows:

I. Every body continues in its state of rest or of uniform motion in
a straight line, unless it is compelled by a force to change that state.

I1. Change of motion is proportional to the applied force and takes
place in the direction of the force.

II1. To every action there is always an equal and opposite reaction,
or, the mutual actions of two bodies are always equal and oppositely
directed.
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Let us now examine these laws in some detail.

Newton’s First Law. Inertial Reference Systems

The first law describes a common property shared by all matter,
namely inertia. The law states that a moving body travels in a straight
line with constant speed unless some influence called force prevents
the body from doing so. Whether or not a body moves in a straight
line with constant speed depends not only upon external influences
(forces) but also upon the particular reference system that is used to
describe the motion. The first law actually amounts to a definition
of a particular kind of reference system called a Newtonian or inertial
reference system. Such a system is one in which Newton’s first law
holds.

The question naturally arises as to how it is possible to determine
whether or not a given coordinate system constitutes an inertial sys-
tem. The answer is not simple. In order to eliminate all forces on
a body it would be necessary to isolate the body completely. This is
impossible, of course, since there are always at least some gravitational
forces acting unless the body was removed to an infinite distance from
all other matter.

For many practical purposes not requiring high precision, a coor-
dinate system fixed to the earth is approximately inertial. Thus, for
example, a billiard ball seems to move in a straight line with constant
speed as long as it does not collide with other balls or hit the cushion.
If the motion of a billiard ball were measured with very high precision,
however, it would be discovered that the path is slightly curved. This
is due to the fact that the earth is rotating and so a coordinate system
fixed to the earth is not actually an inertial system. A better system
would be one using the center of the earth, the center of the sun, and
a distant star as reference points. But even this system would not be
strictly inertial because of the earth’s orbital motion around the sun.
The next best approximation would be to take the center of the sun
and two distant stars as reference points, for example. It is generally
agreed that the ultimate inertial system, in the sense of Newtonian
mechanics would be one based on the average background of all the
matter in the universe.

Mass and Force. Newton’s Second and Third Laws

We are all familiar with the fact that a big stone is not only hard
to lift, but that such an object is more difficult to set in motion (or to
stop) than, say, a small piece of wood. We say that the stone has more
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inertia than the wood. The quantitative measure of inertia is called
mass. Suppose we have two bodies A and B. How do we determine
the measure of inertia of one relative to the other? There are many
experiments that can be devised to answer this question. If the two
bodies can be made to interact with one another, say by a spring
connecting them, then it is found, by careful experiments, that the
accelerations of the two bodies are always opposite in direction and
have a constant ratio. (It is assumed that the accelerations are given
in an inertial reference system and that only the mutual influence of
the two bodies A and B is under consideration.) We can express this
very important and fundamental fact by the equation

L 1)
The constant pp4 is, in fact, the measure of the relative inertia of B
with respect to A. From Equation (1) it follows that ppa = 1/pap.
Thus we might express upa as a ratio

HBA = —
ma

and use some standard body as a unit of inertia. Now the ratio 2

ought to be independent of the choice of the unit. This will be the
case if, for any third body C,

K“BC

HAC

= UBA-

This is indeed found to be true. We call the quantity m the mass.
Strictly speaking, m should be called the inertial mass, for its de-
finition is based on the properties of inertia. In actual practice mass
ratios are usually determined by weighing. The weight or gravitational
force is proportional to what may be called the gravitational mass of
a body. All experience thus far, however, indicates that inertial mass
and gravitational mass are strictly proportional to one another. Hence
for our purpose we need not distinguish between the two kinds of mass.
The fundamental fact expressed by Equation (1) can now be writ-

ten in the form
ma A _ 208 @)
ATa T BT

The product of mass and acceleration in the above equation is the
‘change of motion’ of Newton’s second law and, according to that law,
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is proportional to the force. In other words, we can write the second
law as
dv
F=kn— 3
g7 (3)
where F' is the force and k is a constant of proportionality. It is
customary to take k = 1 and write

dv
F=m— 4
The above equation is equivalent to
d(mv)
F =

if the mass is constant. As we shall see later, the theory of relativity
predicts that the mass of a moving body is not constant but is a
function of the speed of the body, so that Equations (4) and (5) are
not strictly equivalent. However, for speeds that are small compared
to the speed of light, 3 x 10% m/sec, the change of mass is negligible.

According to Equation (4) we can now interpret the fundamental
fact expressed by Equation (2) as a statement that two interacting
bodies exert equal and opposite forces on one another:

Fp=—-Fp

This is embodied in the statement of the third law. Forces are mutual
influences and occur in equal amounts on any two bodies that affect
each other’s motion.

One great advantage of the force concept is that it enables us to
restrict our attention to a single body. The physical significance of the
idea of force is that, in a given situation, there can usually be found
some relatively simple function of the coordinates, called the force
function, which when set equal to the product of mass and acceleration
correctly describes the motion of a body.

I11. Think of the questions to the main points of the text. Then try to
answer the questions given by other students.
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Vocabulary

IV. Give the Russian equivalents of the following words and word com-
binations:

as follows; to take place; let us do it; in some detail; namely; reference
system; the law holds; as to how; in order to; at least; as long as; due
to; reference points; because of; it is generally agreed; in the sense of;
to be under consideration; with respect to; from this it follows that
...; this will be the case if ...; strictly speaking; in actual practice; thus
far; the above equation; according to that law; in other words; it is
customary; compared to.

V. The following combinations have all appeared in the text. Give
their Russian equivalents and pay your attention to the use of words
another and other. If necessary see the table in Unit 7.

from all other matter (line 34); it does not collide with other balls
(line 38); one relative to the other (line 57); to interact with one another
(line 59); proportional to one another (line 81); in other words (line
88); to exert equal and opposite forces on one another (line 103); to
affect each other’s motion (line 106)

V1. Supply prepositions where necessary. Then check against the text.

1. Change of motion is proportional — the applied force and takes
place — the direction — the force.

2. — every action there is always an equal and opposite reaction.

3. Let us now examine these laws — some detail.

4. The law states that a moving body travels — a straight line —
constant speed unless some influence called force prevents the body —
doing so.

5. This depends not only — external influences (forces) but also —
the particular reference system.

6. The question naturally arises as — how it is possible to determine
this.

7. This is impossible since there are always — least some gravitational
forces acting unless the body was removed — an infinite distance —
all other matter.
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8. Suppose we have two bodies A and B. How do we determine the
measure — inertia — one relative — the other?

9. Only the mutual influence — the bodies A and B is — consideration.
10. The constant up4 is, — fact, the measure — relative inertia — B
— respect — A.

11. — our purpose we need not distinguish — the two kinds — mass.
12. — other words, we can write the second law as ... .

13. — speeds that are small compared — the speed — light the change
— mass is negligible.

14. Forces are mutual influences and occur — equal amounts — any
two bodies that affect — each other’s motion.

15. One great advantage — the force concept is that it enables — us
to restrict our attention — a single body.

VII. What is the meaning of one in the following sentences?

1. One of the fundamental tasks of dynamics is to predict which par-
ticular motion will occur in any given situation.

2. Such a system is one in which Newton’s first law holds.

3. A better system would be one using the center of the earth, the
center of the sun, and a distant star as reference points.

4. The ultimate inertial system, in the sense of Newton’s mechanics,
would be one based on the average background of all the matter in the
universe.

5. Suppose we have two bodies A and B. How do we determine the
measure of inertia of one relative to the other?

6. All experience thus far indicates that inertial mass and gravitational
mass are strictly proportional to one another.

7. One great advantage of the force concept is that it enables us to
restrict our attention to a single body.

VIII. Make adverbs of the following words. Mind their spelling.
Give their meanings:

actual; natural; particular; simple; mutual; ultimate; fast; hard;
opposite; strict; first; above; name; late.
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IX. Fill in the chart with forms of the given verbs. Mind their spelling.

Infinitive Past Past ing-form Primary
simple Participle meaning

to deal
to occur
to compel
to apply
to hold
to (a)rise
to raise
to hit

to set

to find
to found

X. Supply some, any, all, every, each. Then check against the
text.

1 One of the fundamental tasks of dynamics is to predict which par-
ticular motion will occur in — given situation.

2. To — action there is always an equal and opposite reaction.

3. Let us now examine these laws in — detail.

4. The first law describes a common property shared by — matter,
namely inertia.

5. The law states that a moving body travels in a straight line with
constant speed unless — influence called force prevents the body from
doing so.

6. In order to eliminate — forces on a body it would be necessary to
isolate the body completely.

7. There are always at least — gravitational forces acting unless the
body was removed to an infinite distance from — other matter.

8. We are — familiar with the fact.

9. We might use — standard body as a unit of inertia.

10. This will be the case if, for — third body C, % = UBA.

11. Forces are mutual influences and occur in equal amounts on —
two bodies that affect — other’s motion.
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12. There can usually be found — relatively simple function of the
coordinates, called the force function.

XI. Connect each pair of the sentences with if or unless.

1. The two bodies can be made to interact with one another, say by a
spring connecting them.

It is found, by careful experiments, that the accelerations of the two
bodies are always opposite in direction and have a constant ratio.
2. Every body continues in its state of rest or of uniform motion in a
straight line.

It is not compelled by a force to change that state.
3. A moving body travels in a straight line with constant speed.

No influence prevents the body from doing so.
4. The form of the function f is known.

We know the motion of the fluid.
5. There are always at least some gravitational forces acting.

The body was not removed to an infinite distance from all other
matter.
6. We draw the streamline through each point of a closed curve.

We obtain a stream tube.

Grammar

XII. Put in proper forms (Past Participle or ing-forms) of the verbs
given in brackets.

1. Dynamics is the branch of mechanics (to deal) with the physical
laws (to govern) the actual motion of material bodies.

2. The first law describes a common property (to share) by all matter,
namely inertia.

3. The law states that a (to move) body travels in a straight line with
constant speed unless some influence (to call) force prevents the body
from (to do) so.

4. There are always at least some gravitational forces (to act) unless
the body was removed to an infinite distance from all other matter.
5. For many practical purposes (not to require) high precision, a co-
ordinate system (to fix) to the earth is approximately inertial.
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6. A better system would be one (to use) the center of the earth, the
center of the sun, and a distant star as reference points.

7. The ultimate inertial system would be one (to base) on the average
background of all the matter in the universe.

8. The two bodies can be made to interact with one another, say by a
spring (to connect) them.

9. In actual practice mass ratios are usually determined by (to weigh).
10. For speeds that are small (to compare) to the speed of light the
change of mass is negligible.

11. We can now interpret the fundamental fact (to express) by this
equation as a statement that two (to interact) bodies exert equal and
opposite forces on one another.

12. There can usually be found some relatively simple function of the
coordinates, (to call) the force function , which when (to set) equal to
the product of mass and acceleration correctly describes the motion of
a body.

XIII. Put in modals (can, may, might, need, should, ought to)
and appropriate forms of the verbs (Passive or Active) given in brack-
ets. Then check against the text.

1. One of the fundamental tasks of dynamics is to predict, out of all
possible ways a material system — (to move), which particular motion
will occur in any given situation.

2. There are many experiments that — (to devise) to answer this
question.

3. We — (to express) this very important and fundamental fact by
the equation.

4. Thus we — (to express) upa as a ratio.

5. Now the ratio up/pa — (to be) independent of the choice of the
unit.

6. Strictly speaking, m — (to call) the inertial mass, for its definition
is based on the properties of inertia.

7. The weight or gravitational force is proportional to what — (to
call) the gravitational mass of a body.

8. Hence for our purpose we — (not to distinguish) between the two
kinds of mass.

9. The fundamental fact expressed by Equation (1) — now (to write)
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in the form ... .

10. In other words, we — (to write) the second law as ... .

11. According to Equation (4) we — now (to interpret) the fundamen-
tal fact expressed by Equation (2) as a statement that two interacting
bodies exert equal and opposite forces on one another.

12. There — usually (to find) some relatively simple function of the
coordinates, called the force function.

XIV. Connect the following pairs of sentences with whether.

1. A body moves or doesn’t move in a straight line with constant
speed.

It depends not only upon external influences (forces) but also upon
the particular reference system that is used to describe the motion.
2. It is possible to determine.

A given coordinate system constitutes or doesn’t constitute an inertial
system.

3. We need to know ...

The work done usually depends on the particular route the particle
takes in going from one point to another.

4. We are not sure.

This knowledge can be of use in predicting the motion of the particle.
5. We'd like to know ...

It is the most fundamental type of force that occurs in nature.

6. The question naturally arises.

The corresponding statement is or is not true in our case.

7. It is easily verified.

The definitions stated above have the following interpretations.

8. We want to know ... .

The proofs of these statements follow directly from the definition.

9. Now we can find out ... .

The remaining equations are easily proved in a similar manner.

XV. Supply the proper forms of the verbs in brackets. Mind the use
of infinitives after the verbs to make and to let.

1. Let us now (to examine) these laws in some detail.
2. Our task is to make theory and experiment (to agree) as closely as
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possible.

3. The two bodies can be made (to interact) with one another.

4. Let us (to examine) the geometric significance of the velocity vector.
5. Attractive forces may make molecules (to collide).

6. Let us (to consider) a rigid body in a uniform gravitational field,
say at the surface of the earth.

7. The body was made (to move) along the given path with constant
speed.

8. Let us (to choose) the z-axis of an appropriate coordinate system
as the axis of rotation.

XVI. Put in the forms of the Subjunctive mood of the verbs in brackets.

1. In order to eliminate all forces on a body it (to be) necessary to
isolate the body completely.

2. If the motion of a billiard ball (to measure) with very high precision,
it (to discover) that the path is slightly curved.

3. A better system (to be) one using the center of the earth, the center
of the sun, and a distant star as reference points.

4. But even this system (not to be) strictly inertial because of the
earth’s orbital motion around the sun.

5. The next best approximation (to be) to take the center of the sun
and two distant stars as reference points.

6. It is generally agreed that the ultimate inertial system, in the sense
of Newtonian mechanics, (to be) one based on the average background
of all the matter in the universe.

7. We (may, to express) this as a ratio.

8. If two of the three principal moments of inertia (to be) equal, then
the ellipsoid of inertia (to be) one of revolution.

9. The earth attracts as if all of its mass ( to concentrate) at a single
point.

10. A uniform spherical body attracts an external particle as if the
entire mass of the sphere (to locate) at the center.

11. The center of mass of the shrapnel from an artillery shell that has
burst in mid-air will follow the same parabolic path that the shell (to
take) if it (not to burst).

XVII. Translate the sentences with Complex Subject.
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1. A billiard ball seems to move in a straight line with constant speed
as long as it does not collide with other balls or hit the cushion.

2. The accelerations of the two bodies are found to be always opposite
in direction and have a constant ratio.

3. The accelerations are assumed to be given in an inertial reference
system.

4. This is indeed found to be true.

5. The force in this case is said to be conservative.

6. This inverse-square relation is also found to be the law of force for
the electric fields of elementary particles.

7. The same function turns out to give the correct force for the three-
dimensional case.

8. When the force F' is a function of the positional coordinates only,
it is said to define a static force field.

9. The stone is said to have more inertia than the wood.

XVIII. Put the words in the correct order to make sentences.

1. Inertia, the, measure, of, is, mass, called, quantitative.

2. Practice, ratios, in, usually, by, determined, weighing, are, mass,
actual.

3. Bodies, two, equal, forces, another, interacting, exert, opposite, one,
on, and.

4. Our, need, between, kinds, for, we, distinguish, two, mass, purpose,
not, the, of.

5. To, forces, body, be, isolate, completely, order, all, a, would, to,
body, in, eliminate, on, it, necessary, the.

Writing

XIX. 1. Give a brief oral summary of what you consider to be the
most important information in the text you have read.

2. Take notes on the important information.
3. Use your notes to write a summary of the text.

NB! When writing your summary, put aside the original text and
work from your notes, putting information into complete sentences in
your own words.
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Supplementary Texts
Text 1

To describe the motion of mechanical systems one uses a variety of
mathematical models which are based on different ‘principles’ — laws
of motion. The simplest and most important model of motion of
real bodies is Newtonian mechanics, which describes the motion of a
free system of interacting point masses in three-dimensional Euclidean
space.

Newtonian Mechanics

Space, Time, Motion. Space, in which motion takes place, is
three-dimensional and Euclidean, with a fixed orientation. We shall
denote it by E3. Fix a point 0 € E® — an ‘origin’ or ‘reference point’.
Then the position of each point s in E? is uniquely specified by its
position (radius) vector 08 = r (with its tail and tip at 0 and s, re-
spectively). The set of all position vectors is the three-dimensional
linear space R3. This space is equipped with the scalar product <, >.

Time is one-dimensional; we denote it uniformly by ¢. The set
R = {t} is called the time axis.

A motion (or path) of the point s is a smooth mapping A — E3,
where A is a time interval. We say that the motion is defined on
the interval A. To each motion there corresponds a unique smooth
vector-function r : A — R3.

The velocity v of the point s at time ¢ € A is the derivative dr/dt =
r(t) € R3. Velocity is clearly independent of the choice of the reference
point.

The acceleration of the point s is the vector a = v =7 € R3. It is
customary to represent the velocity and acceleration as vectors with
tail at the point s.

The set E? is also known as the position (or configuration) space
of the point s. The pair (s,v) is called a state of s, and the space
3 x R3{v} is the state space (or the velocity phase space).

Text 2

The Newton-Laplace Principle of Determinacy. This principle
asserts that the state of a mechanical system at any fixed moment of
time uniquely determines all of its (future and past) motion.
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Suppose we know the state (rg,vg) of the system at the moment
of time ty9. Then by the principle of determinacy we also know the
motion r(t), with r(tg) = ro and 7(t9) = 79 = v, for all t € A C R.
In particular, we can calculate the acceleration 7 at t = t3. The result
is #(to) = f(to,r0,70), where f is a function whose existence follows
from the Newton-Laplace principle. Since we may choose an arbitrary
value for tg, we conclude that the equation

= ftrr)

holds for all ¢. This differential equation is known as the equation of
motion or as Newton’s equation. The existence of Newton’s equation
(with a smooth vector-function f : R{t} x R*"*{r} x R3*{r} — R®")
and the determinacy principle are actually equivalent. This is a con-
sequence of the theorem of existence and uniqueness of solutions from
the theory of ordinary differential equations. The function f in New-
ton’s equation is usually determined experimentally. Its specification
is part of the definition of the mechanical system under consideration.

We will now give examples of Newton’s equation.

a) The equation describing the fall of a point (small body) in va-
cuum near the Earth’s surface (obtained experimentally by Galileo)
has the form: # = —ge,, where g ~ 9.8 m/s? (the free fall or gravita-
tional acceleration), and e, is the vertical unit vector.

b) R. Hooke showed that the equation governing the small oscilla-
tions of a body attached to the extremity of an elastic spring has the
form: & = —az, @ > 0. The constant coefficient a depends on the
body and on the spring in question. This mechanical system is known
as the harmonic oscillator.

As it turns out, in experiments, rather than determining the ac-
celeration f appearing in the right-hand side of Newton’s equation, it
is more convenient to determine the product mf = F', where m is a
positive number called the mass of the point (unraveling the physical
meaning of the mass concept is not among the tasks of dynamics).
Thus, in Hooke’s experiments the constant ma = ¢ depends on the
properties of the elastic spring, but not on the choice of the attached
body; ¢ is called the elasticity constant (or coefficient).

The pair (s,m) (or (r,m), where r is the position vector of the
point s is called a material point (or point mass, or particle) of mass
m. Hereafter we shall often use the letter m to denote both the point s
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and its mass m. If a system consists of n material points with masses
mq, ..., my,, then Newton’s equations

Fi = fi(6, 71, ey Ty T1y ey Tn), 1 <0<y
may be rewritten as
mﬂ“'i =Fi(t,7°,7'°), 1 Szgn

The vector F; = m;f; is called the force acting on the point m;.
The word force does not appear in the basic laws of dynamics that we
just indicated. As a matter of fact, we may also manage without it.
The last equations will be also referred to as Newton’s equations.

c) Newton established that if one considers n point masses (r1,m1),
wors(Tn, my) in space, then the force acting on the i-th point is F; =
> iz Fij where

_ ymymy;

Fi; = Tij, Tij =Ti—1j, = const>0.

Iri;|?
This is the law of universal gravitation (attraction).

d) The resistance force acting on a body moving rapidly in air is
proportional to the square of its velocity (Stoke’s law). Accordingly,
the equation describing the motion of a body falling in air is: mZ =
mg — cz?, with ¢ > 0. One can show that the limit lim;_,, v(t) always
exists and equals y/mg/c, regardless of the initial state of the body.

The determinacy principle holds also in relativistic mechanics. New-
ton’s classical mechanics is distinguished from relativistic mechanics by
Galileo’s principle of relativity.

Text 3

The Principle of Relativity. The direct product E* x R{t} (space-
time) carries a natural structure of affine space. The Galilean group is
the group of all affine transformations of E® x R which preserve time
intervals and which for every fixed t € R are isometries of E*. Thus,
if g: (s,t) — (s,t') is a Galilean transformation, then

Dto —tg =t} — th,

2) if to = tg, then |sq — sg| = [s, — s}5]-
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Obviously, the Galilean group acts on R*{r} x R{t}. We men-
tion three examples of Galilean transformations of this space. First,
uniform motion with velocity v:

g1(r,t) = (r + tv, t).
Next, translation of the reference point (origin) in space-time:
ga(r,t) = (r + z,t + a).
Finally, rotation of the coordinate axes:
gs(r,t) = (Gr, 1),

where G : R® — R3? is an orthogonal transformation.

Proposition 1. Every Galilean transformation ¢ : R x R — R3 x
R can be uniquely represented as a composition (product) g;g-gs of
transformations of the type indicated above.

Let us introduce in E? a ‘fixed’ coordinate system (reference frame):
we fix a point 0 € E? and pick three mutually orthogonal axes through
0. Every Galilean transformation takes this coordinate system into
a new coordinate system which is in uniform rectilinear motion with
respect to the original system. Such coordinate systems are called
inertial.

The action of the Galilean group on E® x R extends to an ac-
tion on E? x ... x E? x R by the rule: if g : (s,t) = (s',t'), then
(81, Snyt) = (84, oy 80, 1),

The principle of relativity states that Newton’s equations, written
in inertial systems, are invariant with respect to the Galilean transfor-
mation group.

This principle imposes a series of conditions on the right-hand side
of Newton’s equation, written in an inertial coordinate system. Thus,
since among the Galilean transformations there are the time transla-
tions, the forces do not depend on the time ¢:

mﬁ’i = Fi(T,f), 1 S ) S n.

Forces that do depend on ¢ may arise in Newtonian mechanics only
in simplified models of motion.

Translations in three-dimensional space E® are also Galilean trans-
formations. From the homogeneity of E? it follows that in inertial
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coordinate systems forces can depend only on the relative coordinates
rg — r;,. Also, from the invariance of Newton’s equations with re-
spect to the subgroup of uniform motions ¢, it follows that forces can
depend only on the relative velocities of the points:

mﬂ’l = Fi(rk — Tl,f’k — f’l), i,k,l = 1, .

Finally, from the isotropy of E? (that is, the invariance under the
subgroup of rotations gs) it follows that

F(Gr,Gr) = GF(r,7).

If a mechanical system consists of only one point, then its motion
in any inertial coordinate system is uniform and rectilinear. In fact, in
this case the force F' does not depend on ¢, r, 7, and is invariant under
rotations. Consequently, f = 0.

If the given system consists of two points, then the forces Fi and F»
acting on these points are directed along the straight line connecting
them. Moreover, according to the principle asserting the equality of
action and reaction, F; = —F5. This principle, which is independent
of the principle of relativity, leads to the general notions of forces of
interaction and closed mechanical system. Thus, a system of n material
points (r;,m;), i = 1,...,n, on which the forces F; act, is said to be
closed if

F; = Z Fij, Fy=—Fy.

1<j<n
i

The vector Fj; is called the force with which the j-th point acts on
the i-th. An important example of interaction is universal gravitation.

We note that if a system consists of three material points, then
from the principle of relativity it follows that the forces acting on the
points lie in the plane which contains them.

Among the examples of laws of motion given above, only universal
gravitation is Galilean-invariant. If, however, in a system of material
points interacting gravitationally, one of the masses is infinitesimally
small (say, a speck of dust in the Solar system), then its influence
on the motion of the other points can be neglected. This leads to
a ‘restricted’ problem (with many important applications in astrono-
my) for which Galileo’s principle of relativity is no longer valid. All
laws of motions, encountered in Newtonian mechanics, which are not
Galilean-invariant, are obtained from invariant laws by making similar
simplifying assumptions.
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Text 4

In 1905 Albert Einstein proposed that the whole concept of the ether
and ‘absolute’ motion through it was sheer nonsense. With amazing
insight he discarded the ether as superfluous and, instead, offered a
radical new approach based on two fundamental postulates:

I. Physical laws are equally valid in all inertial reference systems.

II. The speed of light is the same for all observers regardless of any
relative motion of the source and observer.

These postulates form the basis of the special theory of relativity.

The first postulate is an extension of earlier discussions about iner-
tial reference systems to include all physical laws, not just Newton’s
laws of motion. Einstein had in mind particularly the laws of electro-
dynamics. In his own words ‘— the unsuccessful attempts to discover
any motion of the earth relative to the ’light medium’, suggest that the
phenomena of electrodynamics as well as of mechanics possess no pro-
perties corresponding to the idea of absolute rest’. Einstein went on in
the same paragraph of his famous work to assert the second, and more
remarkable of the two postulates ‘— and also introduce another postu-
late, which is only apparently irreconcilable with the former, namely,
that light is always propagated in empty space with a definite velocity
¢ which is independent of the state of motion of the emitting body.’
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Reading

1. Pre-reading questions:

1. What fundamental concepts of mechanics do you know?

2. Try to explain the difference between scalar and vector quanti-
ties. Give some examples.

I1. Read the text. Make a list of mathematical and mechanical terms.
If necessary use your dictionary to check their meaning and pronunci-
ation.

Text

In any scientific theory, and in mechanics in particular, it is necessary
to begin with certain primitive concepts. It is also necessary to make a
certain number of reasonable assumptions. Two of the most basic con-
cepts are space and time. In our initial study of the science of motion,
mechanics, we shall assume that the physical space of ordinary expe-
rience is adequately described by the three-dimensional mathematical
space of Euclidean geometry. And with regard to the concept of time,
we shall assume that an ordered sequence of events can be measured
on a uniform absolute time scale. We shall further assume that space
and time are distinct and independent entities. Later, when we study
the theory of relativity, we shall reexamine the concepts of space and
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time and we shall find that they are not absolute and independent.
However, this is a matter to which we shall return after we study the
classical foundations of mechanics.

In order to define the position of a body in space, it is necessary
to have a reference system. In mechanics we use a coordinate system.
The basic type of coordinate system for our purpose is the Cartesian or
rectangular coordinate system, a set of three mutually perpendicular
straight lines or axes. The position of a point in such a coordinate
system is specified by three numbers or coordinates, x, y, and z. The
coordinates of a moving point change with time; that is, they are
functions of the quantity ¢ as measured on our time scale.

A very useful concept in mechanics is the particle, or mass point,
an entity that has mass but does not have spatial extension. Strictly
speaking the particle is an idealization that does not exit — even an
electron has a finite size — but the idea is useful as an approximation
of a small body, or rather, one whose size is relatively unimportant in
particular discussion. The earth, for example, might be treated as a
particle in celestial mechanics.

Physical Quantities and Units

The observational data of physics are expressed in terms of certain
fundamental entities called physical quantities — for example, length,
time, force, and so forth. A physical quantity is something that can
be measured quantitatively in relation to some chosen unit. When
we say that the length of a certain object is, say 7 in., we mean that
the quantitative measure 7 is the relation (ratio) of the length of that
object to the length of the unit (1 in.). It has been found that it is
possible to define all of the unit physical quantities of mechanics in
terms of just three basic ones, namely length, mass and time.

The Unit of Length

The standard unit of length is the meter. The meter was formerly
the distance between two scratches on a platinum bar kept at the In-
ternational Bureau of Metric Standards, Sevres, France. The meter
is now defined as the distance occupied by exactly 1,650,763.73 wave-
lengths of light of the orange spectrum line of the isotope krypton
86.

The Unit of Mass

The standard unit of mass is the kilogram. It is the mass of a
cylinder of platinum iridium also kept at the International Bureau.

The Unit of Time
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The basic unit for measurement of time, the second, was formerly
defined in terms of the earth’s rotation. But, like the meter, the second
is now defined in terms of a specific atomic standard. The second is,
by definition, the amount of time required for exactly 9,192,631,770
oscillations of a particular atomic transition of the cesium isotope of
mass number 133.

The above system of units is called the mks system. The mo-
dern atomic standards of length and time in this system are not only
more precise than the former standards, but they are also universally
reproducible and indestructible. Unfortunately, it is not at present
technically feasible to employ an atomic standard of mass.

Actually, there is nothing particularly sacred about the physical
quantities length, mass, and time as a basic set to define units. Other
sets of physical quantities may be used. The so-called gravitational
systems use length, force, and time.

In addition to the mks system, there are other systems in com-
mon use, namely, the cgs, or centimeter-gram-second, system, and
the fps, or foot-pound-second, system. These latter two systems may
be regarded as secondary to the mks system because their units are
specifically defined fractions of the mks units:

lem =10"2m
1g=10"3%kg
1 ft= 0.3048 m
1 Ib= 0.4536 kg

Scalar and Vector Quantities

A physical quantity that is completely specified by a single magni-
tude is called a scalar. Familiar examples of scalars are density, volume,
and temperature. Mathematically, scalars are treated as ordinary real
numbers. They obey all the regular rules of algebraic addition, sub-
traction, multiplication, division, and so on.

There are certain physical quantities that possess a directional char-
acteristic, such as a displacement from one point in space to another.
Such quantities require a direction and a magnitude for their complete
specification. These quantities are called vectors if they combine with
each other according to the parallelogram rule of addition as discussed
below.! Besides displacement in space, other familiar examples of vec-
tors are velocity, acceleration, and force. The vector concept and the

LAn example of the directed quantity that does not obey the rule for addition
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development of a whole mathematics of vector quantities have proved
indispensable to the development of the science of mechanics.

III. Comprehension questions:

In the text they say:
1. ‘A very useful concept in mechanics is the particle or mass point.’
(line 23).

What does this concept mean and why is it so useful in mechanics?

2. ‘The observational data of physics are expressed in terms of certain
fundamental entities called physical quantities.” (line 31)
What is a physical quantity?

IV. What do the words in italics refer to? Check against the text.

1. However, this is a matter to which we shall return after we study
the classical foundations of mechanics. (line 13)

2. The basic type of coordinate system for our purpose is the Cartesian
or rectangular coordinate system. (line 17)

3. ... but the idea is useful as an approximation of a small body, or
rather, one whose size is relatively unimportant in a particular discus-
sion. (line 26)

4. The above system of units is called the mks system. (line 57)

5. The modern atomic standards of length and time in this system are
not only more precise than the former, but they are also universally
reproducible and indestructible. (line 57)

6. These latter two systems may be regarded as secondary to the mks
system. (line 68)

7. These quantities are called vectors. (line 84)

Vocabulary

V. Give the Russian equivalents of the following words and expressions:

is a finite rotation of an object about a given axis. The reader can readily verify
that two successive rotations about different axes do not produce the same effect
as a single rotation determined by the parallelogram rule. For the present we shall
not be concerned with such non-vector directed quantities, however.
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in any scientific theory; in particular; with regard to ...; in order to
...; strictly speaking; and so forth; in relation to ...; namely; by defini-
tion; the above system; the former standards; at present; in addition
to ...; these latter two systems; and so on; with each other; according
to ...; as discussed below; the same effect; for the present; we shall not
be concerned with ... .

VI. These words and expressions have the same meaning. Match a
line in A with a line in B.

A B
certain besides
and so on to treat smth
in addition to ... as
necessary by means of
because in relation to...
reference system some
to be concerned with... to define
in terms of to consider
with regard to ... notion
to require indispensable
to specify to demand
concept coordinate system
to regard and so forth

VII. Prefixes un, in, il, ir, im change the meaning of adjectives.
Give antonyms of the following words. Translate them into Russian.
Consult your dictionary if necessary:

necessary, certain, reasonable, adequate, dependent, finite, important,
possible, destructible, regular, complete, dispensable.
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VIII. Translate the following combinations of words:

time scale; coordinate system; mass point; unit physical quantities;
standard unit; platinum bar; spectrum line; cesium isotope; mks unit;
parallelogram rule; vector concept; vector quantity.

IX. Make these nouns plural. Use your dictionary if necessary:

datum, axis, equilibrium, spectrum, maximum, minimum, phenomenon,
polyhedron, analysis, basis, crisis, vertex, hypothesis, index, phasis,
calculus, focus, genius, locus, nucleus, radius, rhombus, means, appa-
ratus, news, series.

X. Supply prepositions where necessary. Check against the text.

1. Tt is necessary to begin — certain primitive concepts.

2. And — regard — the concept — time, we shall assume that an
ordered sequence — events can be measured — a uniform absolute
time scale.

3. We mean that the quantitative measure 7 is the relation (ratio) —
the length — that object — the length — the unit (1 in.).

4. — addition — the mks system, there are other systems — common
use.

5. These quantities are called vectors if they combine — each other
according — the parallelogram rule — addition.

6. An example — a directed quantity that does not obey — the rule
— addition is a finite rotation — an object — a given axis.

7. — the present we shall not be concerned — such non-vector directed
quantities.

Grammar

X1I. Make these sentences interrogative. Begin with the words in brack-
ets.

1. An ordered sequence of events can be measured on a uniform abso-
lute time scale. (How)
2. Tt is necessary to have a reference system. (What)
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3. In mechanics we use a coordinate system. (What)

4. The coordinates of a moving point change with time. (What)

5. These latter two systems may be regarded as secondary to the mks
system because their units are specifically defined fractions of the mks
units. (Why)

6. They obey all the regular rules of algebraic addition, subtraction,
multiplication, division, and so on. (What)

7. Such quantities require a direction and a magnitude for their com-
plete specification. (What)

8. Other sets of physical quantities may be used. (What)

XII. Make these sentences interrogative and negative if possible.

1. There is nothing particularly sacred about the physical quantities
length, mass and time as a basic set to define units.

2. There are other systems in common use.

3. There are certain physical quantities that possess a directional cha-
racteristic.

4. There can be no confusion when the null vector is denoted by a
‘zero’.

5. There are many experiments that can be devised to answer this
questions.

6. There are some external forces, acting on the respective particles.
7. There may be internal forces of interaction between any two par-
ticles of the system.

XIII. Put the words given in brackets into Present Perfect or Past
Indefinite. Check against the text.

1. The meter (to be) formally the distance between two scratches on
a platinum bar kept at the International Bureau of metric Standards.
2. It (to find) that it is possible to define all of the unit physical
quantities of mechanics in terms of just three basic ones, namely length,
mass and time.

3. The basic unit for measurement of time, second, (to define) formerly
in terms of the earth’s rotation.

4. The vector concept and the development of a whole mathematics
of vector quantities (to prove) indispensable to the development of the
science of mechanics.
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XIV. Supply appropriate forms of the verbs given in brackets (Present
and Future tenses).

1. Later, when we (to study) the theory of relativity, we (to reexa-
mine) the concepts of space and time and we (to find) that they are
not absolute and independent.

2. This is a matter to which we (to return) after we (to study) the
classical foundations of mechanics.

3. If our discussion (to limit) to vectors in a plane, only two compo-
nents (to be necessary).

4. There will be no confusion when the null vector ( to denote) by a
‘zero’.

5. The vector sum will be defined in such a way even if the vectors
(not to have) a common point.

6. If the system (to be) a rigid body and if the sum of all the external
forces (to vanish), then the center of mass, if initially at rest, will re-
main at rest.

7. The light wave will travel outward in all directions if speed (to
equal) c.

XV. Supply the comparative or superlative forms of the adjectives given
in brackets.

1. Two of the (basic) concepts are space and time.

2. The modern atomic standards of length and time are (precise) than
the former standards.

3. The (simple) type of rigid-body motion is that in which the body
is constrained to rotate about a fixed axis.

4. In a (late) chapter we shall study alternative ways of expressing the
laws of motion in (advanced) equations of Lagrange and Hamilton.

5. A (good) system would be one using the center of the earth, the
center of the sun, and a distant star as reference points.

XVI. Complete the sentences with proper forms of verbals.
1. We shall assume that an (to order) sequence of events can be mea-

sured on a uniform absolute time scale.
2. The coordinates of a (to move) point change with time.
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3. They are functions of the quantity ¢ as (to measure) on our time
scale.

4. Strictly (to speak), the particle is an idealization that does not
exist.

5. A physical quantity is something that can be measured quantita-
tively in relation to some (to choose) unit.

6. Kilogram is the mass of a cylinder of platinum iridium (to keep) at
the International Bureau.

7. There are certain physical quantities (to possess) a directional cha-
racteristic.

8. An example of a (to direct) quantity (not to obey) the rule for
addition is a finite rotation of an object about a (to give) axis.

XVII. Supply the appropriate forms (Active or Passive) of the verbs
given in brackets.

1. We (to assume) that an ordered sequence of events (can, to
measure) on a uniform absolute time scale.
2. The coordinates of a moving point (to change) with time; that is,
they are functions of the quantity ¢ which (to measure) on our time
scale.
3. The earth (may, to treat) as a particle in celestial mechanics.
4. The observational data of physics (to express) in terms of certain
fundamental entities that (to call) physical quantities.
5. Other sets of physical quantities (may, to use).
6. These two systems (may, to regard) as secondary to the mks system.
7. A physical quantity that (to specify) completely by a single magni-
tude (to call) a scalar.
8. Mathematically, scalars (to treat) as ordinary real numbers.
9. These quantities (to call) vectors if they (to combine) with each
other according to the parallelogram rule of addition as it (to discuss)
below.
10. The vector concept and the development of a whole mathematics
of vector quantities (to prove) indispensable to the development of the
science of mechanics.
11. The reader (can, to verify) readily that two successive rotations
about different axes (not to produce) the same effect as a single rota-
tion that (to determine) by the parallelogram rule.
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12. We (not to concern) with non-vector directed quantities.

Writing

XVIIIL. Look through the text again to produce a set of notes on: The
Cartesian coordinate system. Then reconstitute your notes in the form
of a short paragraph. Remember to use your own words. Do not refer
to the original text but only your notes when writing the paragraph.

Supplementary Texts
Text 1

Scalars and vectors. Pure numbers and physical quantities which
do not require direction in space for their complete specification are
called scalar quantities, or simply scalars. Volume, density, mass and
energy are familiar examples. Fluid pressure is also a scalar. The
thrust on an infinitesimal plane area due to fluid pressure is, however,
not a scalar, for to describe this thrust completely, the direction in
which it acts must also be known.

A wvector quantity, or simply a vector, is a quantity which needs for
its complete specification both magnitude and direction, and which
obeys the parallelogram law of composition (addition), and certain
laws of multiplication which will be formulated later. Examples of
vectors are readily furnished by velocity, linear momentum and force.
Angular velocity and angular momentum are also vectors, as is proved
in books on Mechanics.

A vector can be represented completely by a straight line drawn in
the direction of the vector and of appropriate magnitude to some cho-
sen scale. The sense of the vector in this straight line can be indicated
by an arrow.

In some cases a vector must be considered as localized in a line.
For instance, in calculating the moment of a force, it is clear that the
position of the line of action of the force is relevant.

In many cases, however, we shall be concerned with free vectors,
that is to say, vectors which are completely specified by their direction
and magnitude, and which may therefore be drawn in any convenient
positions. Thus if we wish to find only the magnitude and direction of
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the resultant of several given forces, we can use the polygon of forces
irrespectively of the actual positions in space of the lines of action of
the given forces.

We shall represent a vector by a single letter in clarendon (heavy)
type and its magnitude by the corresponding letter in italic type. Thus
if q is the velocity vector, its magnitude is ¢, the speed. Similarly the
angular velocity w has the magnitude w.

A unit vector is a vector whose magnitude is unity. Any vector
can be represented by a numerical (scalar) multiple of a unit vector
parallel to it. Thus if i, is a unit vector parallel to the vector a, we
have

a = ai,.

Text 2

The scalar product of two vectors. Let a, b be two vectors of
magnitudes a, b, represented by the lines OA, OB issuing from the
point O.

Let 0 be the angle between the vectors, i.e. the angle AOB mea-
sured positively in the sense of minimum rotation from a to b.

B

0 a M A

The scalar product of the vectors is then ab and is defined by the
relation
ab = abcos?.

The scalar product is a scalar and is measured by the product
OA - OM, where M is the projection of B on OA, so that OA = a,
OM = bcosh. It is clear from the definition that

ba = ba cos(—6) = abcosf = ab,

so that the order of the two factors is irrelevant.
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When the vectors are perpendicular, cos§ = 0, so that ab = 0.
Conversely this relation implies either that a, b are perpendicular, or
that a = 0, or that b = 0.

If ab = 0, where b is an arbitrary vector, then a = 0, for a cannot
be perpendicular to every vector b.

If 8 is an obtuse angle, the scalar product is negative.

If 4, is a unit vector, then i,b = bcosf, which is the resolved part
of the vector b along the direction of any vector which is parallel to i,.

If 74, iy are both unit vectors, then 4,7, = cosf, which is the cosine
of the angle between any two vectors parallel to i, and ;.

If the point of application of a force F' moves with velocity v, the
rate at which the force is doing work is the scalar product Fv.
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Reading

1. Pre-reading questions:

1. What is Pressure?
2. What does Hydrodynamics deal with?

I1. Read the text. Make a list of terms used in mechanics. If necessary
use your dictionary to check their meaning and pronunciation.

Text

Pressure. Consider a small plane of infinitesimal area do, whose
centroid is P, drawn in the fluid, and draw the normal PN on one side
of the area which we shall call the positive side. The other side will be
called the negative side.

We shall make the hypothesis that the mutual action of the fluid
particles on the two sides of the plane can, at a given instant, be
represented by two equal but opposite forces pdo applied at P, each
force being a push not a pull, that is to say, the fluid on the positive
side pushes the fluid on the negative side with a force pdo.

Experiment shows that in a fluid at rest these forces act along the
normal. In a real fluid in motion these forces make an angle ¢ with
the normal (analogous to the angle of friction). When the viscosity is
small, as in the case of air and water, € is very small. In an inviscid
fluid which can exert no tangential stress ¢ = 0, and in this case p is
called the pressure at the point P.
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Pressure is a scalar quantity, i.e. independent of direction. The
dimensions of pressure in terms of measure ratios M, L, T of mass
length and time are indicated by M L~1T~2.

The thrust on an area d o due to pressure is a force, that is a vector
quantity, whose complete specification requires direction as well as
magnitude. Pressure in a fluid in motion is a function of the position
of the point at which it is measured and of the time. When the motion
is steady the pressure may vary from point to point, but at a given
point it is independent of the time.

It should be noted that p is essentially positive.

Bernoulli’s theorem (special form). In the steady motion of a
liquid the quantity
1.
Py ~¢> + gh
p 2
has the same value at every point of the same streamline where p, p, ¢
are the pressure, density, and speed, g is the acceleration due to gravity,
and h is the height of the point considered above a fixed horizontal
plane.

Hydrodynamic pressure. In the steady motion of a liquid Bernoulli’s

theorem enables us to elucidate the nature of pressure still further. In
a liquid at rest there exists at each point a hydrostatic pressure pg
and the principle of Archimedes states that a body immersed in the
fluid is buoyed up by a force equal to the weight of the liquid which
it displaces. The particles of the liquid are themselves subject to this
principle and are therefore in equilibrium under the hydrostatic pres-
sure py and the force of gravity. It follows at once that pg/p + gh
is constant throughout the liquid. When the liquid is in motion the
buoyancy principle still operates, so that if we write

P =Dpp +PpH,
Bernoulli’s theorem gives

1
p—D+§q2+p7H+gh=O,

and therefore

Pbp 1, '
g% = 1
p+2q ', (1)

where C' = C — (pu/p + gh) is a new constant.
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Now (1) is the form which Bernoulli’s theorem would assume if the
force of gravity were non-existent.

The quantity pp may be called the hydrodynamic pressure, or the
pressure due to motion. This pressure pp measures the force with
which two fluid particles are pressed together (for both are subject to
the same force of buoyancy). It will be seen that the knowledge of the
hydrodynamic pressure will enable us to calculate the total effect of the
fluid pressure on an immersed body, for we have merely to work out
the effect due to pp and then add the effect due to py , which is known
from the principles of hydrostatics. This is a very important result, for
it enables us to neglect the external force of gravity in investigating
many problems, due allowance being made for this force afterwards.

It is often felt that hydrodynamical problems in which external
forces are neglected or ignored are of an artificial and unpractical na-
ture. This is by no means the case. The omission of external forces is
merely a device for avoiding unnecessary complications in our analysis.

It should therefore be borne in mind that when we neglect external
forces we calculate in effect the hydrodynamic pressure.

We also see from (1) that the hydrodynamic pressure is greatest
where the speed is least, and also that the greatest hydrodynamic
pressure occurs at points of zero velocity.

It should be observed, however, that the device of introducing hy-
drodynamic pressure can be justified only when the boundaries of the
fluid are fixed, for only in these conditions is the hydrostatic pressure
constant at a given point. When the liquid has free surfaces which
undulate, the hydrostatic pressure at a fixed point will vary, and we
must consider the total pressure.

In the case of compressible fluids the pressure due to motion is
usually called aerodynamic pressure.
III. Comprehension questions:

In the text they say:
1. ‘... in this case p is called the pressure at the point P.” (line 14)
What case do they mean?
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2. ‘It should be observed, however, that the device of introducing
hydrodynamic pressure can be justified only when the boundaries of
the fluid are fixed.” (line 70)

Explain this statement.

IV. What do the words in italics refer to? Check against the text.

1. Experiment shows that in a fluid at rest these forces act along the
normal. (line 10)

2. The particles of the liquid are themselves subject to this principle.
(line 38)

3. This pressure pp measures the force with which two fluid par-
ticles are pressed together (for both are subject to the same force of
buoyancy). (line 52)

4. This is a very important result. (line 58)

5. This is by no means the case. (line 63)

Vocabulary

V. Give the Russian equivalents of the following expressions:

the two sides;  that is to say; in terms of; due to; as well as;
it should be noted; at rest; it follows that; at once; both are
subject to the same force;  the forces are of artificial nature;  this
is not the case; by no means; it should be borne in mind; in
effect; it should be observed.

VI. The words in the charts below have all appeared in the text. Give
the other parts of speech, their translation and pronunciation. Use
your dictionary if necessary.
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verb noun
to represent —

— push noun adjective

— pull quantity —

— force — analogous
to exist — — independent
to state — — long
to occur — nature —

— omission condition —

— weight

to assume —
verb noun adjective
to consider — —
— — direct
— — equal
to buoy — —
to vary — —
— specification —
— — compressible

VII. Supply prepositions. Then check against the text.

1.Experiment shows that — a fluid — rest these forces act — the
normal.
2. — areal fluid — motion these forces make an angle ¢ — the normal

(analogous — the angle — friction).

3. When the motion is steady the pressure may vary — point — point,
but — a given point it is independent — the time.

4. The principle — Archimedes states that a body immersed — the
fluid is buoyed up — a force equal — the weight — the liquid which
it displaces.

5. The particles — the liquid are themselves subject — this principle
and are therefore — equilibrium — the hydrostatic pressure py and
the force — gravity.

6. This is — no means the case.

7. It should be borne — mind that when we neglect external forces we
calculate — effect the hydrodynamic pressure.
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8. — the case — compressible fluids the pressure due — motion is
usually called aerodynamic pressure.

VIII. Pay attention to the meaning of for in the following sentences.
Think of some other examples.

1. This is a very important result, for it enables us to neglect the
external force of gravity in investigating many problems.

2. The omission of external forces is merely a device for avoiding
unnecessary complications in our analysis.

3. There is no need for us to prove this theorem.

4. For many years mathematicians have looked for the solution of the
problem.

IX. Translate the following combinations of nouns.

fluid particle; vector quantity; buoyancy principle; fluid pressure; zero
velocity.

Grammar

X. Put in the proper forms (Present Participle or Past Participle) of
the verbs given in brackets.

1. Consider a small plane of infinitesimal area do, whose centroid is P
(to draw) in the fluid.

2. The mutual action of the fluid particles on the two sides of the plane
can, at a (to give) instant, be represented by two equal but opposite
forces pdo (to apply) at P.

3. A body (to immerse) in the fluid is buoyed up by a force equal to
the weight of the liquid which it displaces.

4. It enables us to neglect the external force of gravity (to investigate)
many problems.

5. When the liquid has free surfaces which undulate, the hydrostatic
pressure at a (to fix) point will vary.

6. In an inviscid fluid (to exert) no tangential stress € = 0.

7. In the above discussion there is nothing (to show) that the pres-
sure p is independent of the orientation of the element do (to use) in
defining p.
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XI. Put in the modals can, may, must, have to, should and proper
forms of the verbs in brackets. Alternatives are possible.

1. When the motion is steady the pressure — (to vary) from point to
point.

2. It — (to note) that p is essentially positive.

3. We — (to be) content with a definition of density given above.

4. The mutual action of the fluid particles on the two sides of the plane
— (to represent) by two equal but opposite forces pdo applied at P.
5. The quantity pp — (to call) the hydrodynamic pressure.

6. We — (to work out) the effect due to pp.

7. It — (to bear) in mind that when we neglect external forces we
calculate in effect the hydrodynamic pressure.

8. It — (to observe) that the device of introducing hydrodynamic
pressure — (to justify) only when the boundaries of the fluid are fixed.
9. When the liquid has free surfaces which undulate, the hydrostatic
pressure at a fixed point will vary, and we — (to consider) the total
pressure.

XII. Supply articles a/an, the, —

1. Draw — normal PN on one side of — area which we shall call —
positive side — other side will be called — negative side.

2. We shall make — hypothesis that — mutual action of — fluid parti-
cles on — two sides of — plane can, at — given instant, be represented
by — two equal but opposite forces.

3. In — fluid at — rest these forces act along — normal.

4. Pressure in — fluid in — motion is — function of — position of —
point at which it is measured and of — time.

5. Both are subject to — same force of — buoyancy.

6. It will be seen that — knowledge of — hydrodynamic pressure will
enable us to calculate — total effect of — fluid pressure on — im-
mersed body.

7. This is — very important result, for it enables us to neglect —
external force of — gravity in — investigating many problems.

8. This is by no means — case.

XII. Put in the proper comparative or superlative forms.
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1. In the steady motion of a liquid Bernoulli’s theorem enables us to
elucidate the nature of pressure still (far).

2. We also see that the hydrodynamic pressure is (great) where the
speed is (little).

3. The depth and breadth increase together if and only if, w? < gh,
i.e., if u is (little) than the speed of propagation of long waves in the
channel.

4. The gravitational field is clearly (important) of conservative fields
of force.

5. Then Bernoulli’s theorem will take a (general) form.

6. A (precise) definition of viscosity will be given (late).

XIV. Supply the correct forms of the verbs. Use the Subjunctive mood.
Translate the sentences into Russian

1. This is the form which Bernoulli’s theorem (to assume) if the force
of gravity (to be) non-existent.

2. If the breadth of the channel (to vary) slightly, there (to be) a small
consequent change in u.

3. If we (to denote) by Q the potential energy per unit mass in a
conservative field, Bernoulli’s theorem (to take) the more general form,
and the same method of proof (can, to use).

4. If the motion (to be) steady, the path lines (to coincide) with the
streamlines.

5. If we (to draw) the streamlines through each point of a closed curve
we (to obtain) a stream tube.

6. If we (to place) an obstacle A in the middle of the tube, the flow
in the immediate neighbourhood of A (to derange), but at a great
distance either upstream or downstream the flow (to be) undisturbed.
7. If we (to impose) on the whole system a uniform velocity V' in the
direction opposite to that of the current, the liquid at a great distance
(to reduce) to rest and A (to move) with uniform velocity V.

8. (to be) the vortex alone in the otherwise undisturbed fluid, the
velocity at the point (to have) the value in question.
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XYV. Pay attention to the Absolute Participle construction. Translate
the sentences into Russian.

1. We shall make the hypothesis that the mutual action of the fluid
particles on the two sides of the plane can, at a given instant, be
represented by two equal but opposite forces applied at P, each force
being a push not a pull.

2. This is a very important result, for it enables us to neglect the
external force of gravity in investigating many problems, due allowance
being made for this force afterwards.

3. The vortex lines being straight and parallel, all vortex tubes are
cylindrical.

4. The motion being dependent on the time, the configuration of the
stream tubes and filaments changes from instant to instant.

5. The point of application of a force F' moving with velocity V', the
rate at which the force is doing work is the scalar product F,.

6. Another important example of this principle occurs when the surface
S separates not two different fluids, but two regions of the same fluid,
there being a discontinuity of tangential velocity at the surface S.

XVI. Put questions to the following statements. Translate them into
Russian.

1. In a liquid at rest there exists at each point a hydrostatic pressure.
2.In the above discussion there is nothing to show that the pressure p
is independent of the orientation of the element do used in the defining
p.
3. In air at ordinary temperatures there are about 3 x 10'? molecules
per cm?®.
4. There is no flow into the region across S.
5. To each point of space there corresponds a scalar.
6. There cannot be two different forms of acyclic irrotational motion
of a confined mass of liquid in which the boundaries have prescribed
velocities.
7. There are many experiments that can be devised to answer this
question.
8. To every action there is always an equal and opposite reaction.
9. There can usually be found some relatively simple function of the
coordinates, called the force function, which describes the motion of a
body.
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Writing

XVII. Look through the text again to produce a set of notes on: Hy-
drodynamic pressure. Then reconstitute your notes in the form of
a paragraph. Remember to use your own words. Do not refer to the
original text but only your notes when writing the paragraph.

Supplementary Texts

Text 1

Density
If M is the mass of the fluid within a closed volume V', we can write

M = Vpu (1)

and p; is then the average density of the fluid within the volume at
that instant. In a hypothetical medium continuously distributed we
can define the density p as the limit of p; when V' — 0.

In an actual fluid which consists of a large number of individual
molecules we cannot let V' — 0, for at some stage there might be no
molecules within the volume V. We must therefore be content with
a definition of density given by (1) on the understanding that the
dimensions of V' are to be made very small, but not so small that V'
does not still contain a large number of molecules. In air at ordinary
temperatures there are about 3 x 10'? molecules per em®. A sphere
of radius 0 - 001 cm. will then contain about 10! molecules, and
although small in the hydrodynamical sense will be reasonably large
for the purposes of measuring average density.

Text 2

Remarks on Bernoulli’s Theorem
The form in which the theorem has been stated is called special for
two reasons. Firstly, we have assumed the external forces to be due to
gravity alone. The field of gravitational force is a conservative field,
meaning by this that the work done by the weight when a body moves
from a point P to another point @) is independent of the path taken
from P to @ and depends solely on the vertical height of ) above
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P. A conservative field of force gives rise to potential energy, which
is measured by the work done in taking the body from one standard
position to any other position. In order that potential energy of a unit
mass at a point may have a definite meaning, it is obviously necessary
that the work done by the forces of the field should be independent
of the path by which that point was reached. The gravitational field
is clearly the most important of conservative fields of force, but it is
by no means the only conceivable field of this nature; for example, an
electrostatic field has the conservative property. If more generally we
denote by @ the potential energy per unit mass in a conservative field,
Bernoulli’s theorem would take the more general form that

Py qu +Q

p 2
is constant along a streamline, and the same method of proof could be
used.

Secondly, we have assumed the fluid to be incompressible, and of

constant density. More generally, when the pressure is a function of
the density, the theorem assumes the form that

d 1
/—p+—q2+Q
p 2

is constant along a streamline.

Text 3

Streamlines and Paths of the Particles

A line drawn in the fluid so that its tangent at each point is in the
direction of the fluid velocity at that point is called a streamline.

When the fluid velocity at a given point depends not only on the
position of the point but also on the time, the streamlines will alter
from instant to instant. Thus photographs taken at different instants
will reveal a different system of streamlines. The aggregate of all the
streamlines at a given instant constitutes the flow pattern at that in-
stant.

When the velocity at each point is independent of the time, the flow
pattern will be the same at each instant and the motion is described
as steady. In this connection it is useful to describe the type of motion
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which is relatively steady. Such a motion arises when the motion can
be regarded as steady by imagining superposed on the whole system,
including the observer, a constant velocity. Thus when a ship steams
on a straight course with constant speed on an otherwise undisturbed
sea, to an observer in the ship the flow pattern which accompanies him
appears to be steady and could in fact be made so by superposing the
reversed velocity of the ship on the whole system consisting of the ship
and sea.

If we fix our attention on a particular particle of the fluid, the curve
which this particle describes during its motion is called a path line. The
direction of motion of the particle must necessarily be tangential to the
path line, so that the path line touches the streamline which passes
through the instantaneous position of the particle as it describes its
path.

Thus the streamlines show how each particle is moving at a given
instant.

The path lines show how a given particle is moving at each instant.

When the motion is steady, the path lines coinside with the stream-
lines.

Text 4

Acyclic and Cyclic Irrotational Motion
When the region occupied by fluid moving irrotationally is simply con-
nected, the velocity potential is one-valued, for the velocity potential

at P is defined by
or==[ = qr &
(OAP)

and this integral is the same for all paths from O to P, for all such
paths are reconcilable. Motion in which the velocity potential is one-
valued is called acyclic. Thus in a simply connected region the only
possible irrotational motion is acyclic. This result depends essentially
on the possibility of joining any two paths from O to P by a surface
lying entirely within the fluid and then applying Stokes’ theorem.
When the region is not simply connected, two paths from O to P
can only be joined by a surface lying entirely within the fluid when
these paths are reconcilable. When the paths are not reconcilable,
the inference from Stokes’ theorem cannot be made, and the velocity
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potential may then have more than one value at P, according to the
path taken from O to P.

When the velocity potential is not one-valued the motion is said to
be cyclic.

In the continuous motion of a fluid the velocity at any point must
be perfectly definite. Thus, even when ¢ has more than one value at
a given point, V¢ must be one-valued. It follows that although two
paths from O to P may lead to different values of ¢p, these values
can only differ by a scalar &, such that 7k = 0, and k is therefore
independent of the coordinates of P. This scalar & may be identified
with the circulation in any one of a family of reconcilable irreducible
circuits, for, if C' be any circuit, (1) shows that

circ C = decrease in ¢ on describing the circuit once. (2)

We shall have occasion later to consider particular types of cyclic
motion. For the present we shall consider only acyclic irrotational
motion, and the general theorems which follow must be considered as
applying to that type of motion only. In that sense the regions con-
cerned may always be considered as simply connected, but it should be
remembered that acyclic motion is also possible in multiply connected
regions.

Text 5

Uniqueness Theorems
We shall now prove some related theorems concerning acyclic irrota-
tional motion of a liquid. The proofs are all based on the following
equivalence of the expressions for the kinetic energy,

1 s 1 o
Ep/q dr = —y/aﬁ%d& (1)

where the volume integral is taken throughout the fluid and the surface
integral is taken over the boundary.

(I) Acyclic irrotational motion is impossible in a liquid bounded
entirely by fixed rigid walls.

For g—ﬁ = 0 at every point of the boundary, and therefore [ ¢*> dr =
0. Since ¢? cannot be negative, ¢ = 0 everywhere and the liquid is at
rest.
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(IT) The acyclic irrotational motion of a liquid bounded by rigid
walls will instantly cease if the boundaries are brought to rest.

This is an immediate corollary to (I).

(III) There cannot be two different forms of acyclic irrotational
motion of a confined mass of liquid in which the boundaries have pre-
scribed velocities.

For, if possible, let ¢1, ¢2 be the velocity potentials of two different
motions subject to the condition d¢;/0n = O¢y/IOn at each point of
the boundary.

Then ¢ = ¢1 — ¢ is a solution of Laplace’s equation and therefore
represents a possible irrotational motion in which

20 _ 90 _ b _
on ~ On on

Therefore, as in (I), ¢ = 0 at every point, and therefore ¢; — ¢ =
constant, so that the motions are essentially the same.

This theorem shows that acyclic motion is uniquely determined
when the boundary velocities are given.

(IV) If given impulsive pressures are applied to the boundaries of
a confined mass of liquid at rest, the resulting motion, if acyclic and
irrotational, is uniquely determinate.

If possible, let ¢; and ¢2 be velocity potentials of two different
motions. The impulsive pressure which would start the first motion is
p¢1 , that which would start the second is p¢» , and since the pressures
are given at the boundaries

po1L = po2

at each point of the boundary.

Therefore ¢ = ¢1 — ¢= is the velocity potential of a possible ir-
rotational motion such that ¢ = 0 at each point of the boundary.
Therefore, from (1), ¢ = 0 at each point of the liquid. It follows that
¢1 — ¢2 is constant and the motions are essentially the same.

(V) Acyclic irrotational motion is impossible in a liquid which is
at rest at infinity and is bounded internally by fixed rigid walls.

Since the liquid is at rest at infinity and there is no flow over the
internal boundaries, the kinetic energy is still given by (1) and the
proof is therefore the same as in (I).
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(VI) The acyclic irrotational motion of a liquid at rest at infin-
ity and bounded internally by rigid walls will instantly cease if the
boundaries are brought to rest.

This is an immediate corollary to (V).

(VII) The acyclic irrotational motion of a liquid, at rest at infin-
ity, due to the prescribed motion of an immersed solid, is uniquely
determined by the motion of the solid.

If possible, let ¢1,¢s be the velocity potentials of two different
motions. The boundary conditions are

% = % at the surface of the solid, g1 = ¢ = 0 at infinity.

on on

Thus ¢ = ¢ — ¢5 is the velocity potential of a possible motion, such
that 0¢/0n = 0 at the surface of the solid, ¢ = 0 at infinity. It then
follows from (1) that ¢ = 0 everywhere, so that ¢; — ¢o = constant,
and the motions are essentially the same.

(VIII) If the liquid is in motion at infinity with uniform velocity,
the acyclic irrotational motion, due to the prescribed motion of an
immersed solid, is uniquely determined by the motion of the solid.

For the relative kinematical conditions are unaltered if we super-
pose on the whole system of solid and liquid a velocity equal in magni-
tude and opposite in direction to the velocity at infinity. This brings
the liquid to rest at infinity. The resulting motion is then determinate
by (VII) and we return to the given motion by reimposing the velocity
at infinity.

Text 6

Motion in Two Dimensions
Two-dimensional motion is characterized by the fact that the lines
of motion are all parallel to a fixed plane and that the velocity at
corresponding points of all planes, parallel to the fixed plane has the
same magnitude and direction. To explain this more fully, suppose
that the fixed plane is the plane of zy and that P is any point in that
plane. Draw P(Q perpendicular to the plane zy (or parallel to Oz).
Then points on the line PQ are said to correspond to P. Take any
plane (in the fluid) parallel to zy and meeting P@ in R. Then, if the
velocity at P is ¢ in the xy plane in a direction making an angle 8 with
Oy, the velocity at R is equal in magnitude and parallel in direction

149



15

20

25

35

English for Students of Mathematics and Mechanics. Part II.

to the velocity at P. The velocity at corresponding points is then a
function of z,y and the time ¢, but not of z. It is therefore sufficient to
consider the motion of fluid particles in a representative plane, say the
zy plane, and we may properly speak of the velocity at the point P,
which represents the other points on the line PQ at which the velocity
is the same.

Q

=

P xq

In order %o keep in touch with physical reality it is often useful to
suppose the fluid in two-dimensional motion to be confined between
two planes parallel to the plane of motion and at unit distance apart,
the fluid being supposed to glide freely over these planes without en-
countering any resistance of a frictional nature. Thus in considering
the problem of the flow of liquid past a cylinder in a two-dimensional
motion in planes perpendicular to the axis of the cylinder, instead of
considering a cylinder of infinite length, a more vivid picture is ob-
tained by restricting attention to a unit length of cylinder confined
between the said planes.

In considering the motion of a cylinder in a direction perpendic-
ular to its axis, we can profitably suppose the cylinder to be of unit
thickness' and to encounter no resistance from the barrier planes. This
method of envisaging the phenomena in no way restricts the generality
and does not affect the mathematical treatment.

To complete the picture we shall adopt as our representative plane
of the motion the plane which is parallel to our hypothetical fixed
planes and midway between them.

IThe term ‘thickness’ will be used to denote dimensions perpendicular to the
plane of the motion.
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Thus in the case of a circular cylinder moving in two dimensions
the diagram will show the circle C' which represents the cross-section
of the cylinder by the aforesaid reference plane, and the centre A of
this circle will be the point where the axis of the cylinder crosses the
reference plane. This point may with propriety be called the centre of
the cylinder. More generally any closed curve drawn in the reference
plane represents a cross-section of a cylindrical surface bounded by the
fixed planes.

Two-dimensional motion, presents opportunities for special mathe-
matical treatment and enables us to investigate the nature of many
phenomena which in their full three-dimensional form have to the
present proved intractable.

Text 7

Simple Closed Polygons
The elementary idea of a polygon exemplified by, say, a rectangle or
a regular hexagon is familiar. For hydrodynamical applications it will
be necessary to extend this concept to rectilinear configurations which
do not at first sight appear to resemble the polygons of elementary
geometry. Let us consider two properties of the rectangle (or of the
regular hexagon).

(a) It is possible to go from any assigned point of the boundary to
any other assigned point of the boundary by following a path which
never leaves the boundary. The boundary is connected.

(b) The boundary divides the points of the plane into two regions
the points of which may be called interior points and exterior points
respectively. The interior points are such that any two of them can be
joined by a path which never intersects the boundary. The same holds
of the exterior points. On the other hand, it is impossible to go from
an interior point to an exterior point without crossing the boundary
somewhere.

Any configuration of straight lines in a plane which has the proper-
ties (a) and (b) will be called a simple closed polygon. The adjective
‘simple’ refers to the property that every point of the plane is either
an interior point, a point of the boundary, or an exterior point, the
points of each class forming a connected system.

In many problems of hydrodynamical interest the boundaries of the
polygon extend to infinity.
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