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I. The Greek View
of Motion

Isaak Asimov, Understanding Physics, First Mentor Printing,
April, 1969.

Among the first phenomena considered by the curious Greeks
was motion. One might initially suspect that motion is an attribute
of life; after all, men and cats move freely but corpses and stones do
not. A stone can be made to move, to be sure, but usually through
the impulse given it by a living thing.

However, this initial notion does not stand up, for there are
many examples of motion that do not involve life. Thus, the
heavenly objects move across the sky and the wind blows as it
wills. Of course, it might be suggested that heavenly bodies are
pushed by angels and that wind is the breath of a storm-god, and
indeed such explanations were common among most societies and
through most centuries. The Greek philosophers, however, were
committed to explanations that involved only that portion of the
universe that could be deduced by human reason from phenomena
apparent to human senses. That excluded angels and storm-gods.

Furthermore, there were pettier examples of motion. The smoke
of a fire drifted irregularly upward. A stone released in midair
promptly moved downward, although no impulse in that direction
was given it. Surely not even the most mystically minded individual
was ready to suppose that every wisp of smoke, every falling scrap
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of material, contained a little god or demon pushing it here and
there.

The Greek notions on the matter were put into sophisticated
form by the philosopher Aristotle (384-322 B.C.). He maintained
that each of the various fundamental kinds of matter (“elements”)
had its own natural place in the universe. The element “earth”, in
which was included all the common solid materials about us, had as
its natural place the center of the universe. All the earthy matter
of the universe collected then and formed the world upon which
we live. If every portion of the earthy material got as close to the
center as it possibly could, the earth would have to take on the shape
of a sphere (and this, indeed, was one of several lines of reasoning
used by Aristotle to demonstrate that the earth was spherical and
not flat).

The element “water” had its natural plan about the rim of the
sphere of “earth.” The element “air” had its natural plan about the
rim of the sphere of “water” and the element “fire” had its natural
place outside the sphere of “air.”

While one can deduce almost any sort of scheme of the universe
by reason alone, it is usually felt that such a scheme is not worth
spending time on unless it corresponds to “reality” – to what our
senses tell us about the universe. In this case, observations seem
to back up the Aristotelian view. As far as the senses can tell, the
earth is indeed at the center of the universe; oceans of water cover
large portions of the earth; the air extends about land and sea; and
in the airy heights there are even occasional evidence of a sphere of
fire that makes itself visible during storms in the form of lightning.

The notion that every form of substance has its natural plan
in the universe is an example of an assumption. It is something
accepted without proof, and it is incorrect to speak of an assumption
as either true or false, since there is no way of proving it to be
either. (If there were, it would no longer be an assumption.) It is
better to consider assumptions as either useful or useless, depending
on whether or not deductions made from them corresponded to
reality.
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If two different assumptions, or sets of assumptions, both lead
to deductions that correspond to reality, then the one that explains
more is the more useful.

On the other hand, it seems obvious that assumptions are the
weak points in any argument, as they have to be accepted on faith in
a philosophy of science that prides itself on its rationalism. Since we
must start somewhere, we must have assumptions, but at least let us
have as few assumptions as possible. Therefore, of two theories that
explain equal areas of the universe, the one that begins with fewer
assumptions is the more useful. Because William of Ockham (1300?
-1349?), a medieval English philosopher, emphasized this point of
view, the effort made to whittle away at unnecessary assumptions
is referred to as making use of “Ockham’s razor”.

The assumption of “natural plan” certainly seemed a useful one
to the Greeks. Granted that such a natural place existed, it seemed
only reasonable to suppose that whenever an object found itself
out of its natural place, it would return to that natural place as
soon as given the chance. A stone, held in the hand in midair, for
instance, gives evidence of its “eagerness” to return to its natural
place by the manner in which it presses downwards. This, one might
deduce, is why it has weight. If the supporting hand is removed, the
arm promptly moves toward its natural place and falls downward.
By the same reasoning, we can explain why tongues of fire shoot
upward, why pebbles fall down through water, and why bubbles of
air rise up through water.

One might even use the same line of argument to explain
rainfall. When the heat of the sun vaporizes water (“turns it into
air” a Greek might suppose), the vapors promptly rise in search
of their natural place. Once those vapors are converted into liquid
water again, the latter falls in droplets in search of their natural
place.

From the assumption of “natural place,” further deductions can
be made. One object is known to be heavier than another. The
heavier object pushes downward against the hand with a greater
“eagerness” than the lighter object does. Surely, if each is released
the heavier object will express its greater eagerness to return to its
place by falling more rapidly than the lighter object. So Aristotle
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maintained, and indeed this too seemed to match observation, for
light objects such as feathers, leaves, and snowflakes drifted down
slowly, while rocks and bricks fell rapidly.

But can the theory withstand the test of difficulties deliberately
raised? For instance, an object can be forced to move away from
its natural place, as when a stone is thrown into the air. This is
initially brought about by muscular impulse, but once the stone
leaves the hand, the hand is no longer exerting an impulse upon it.
Why then doesn’t the stone at once resume its natural motion and
fall to earth? Why does it continue to rise in the air?

Aristotle’s explanation was that the impulse given the stone was
transmitted to the air and that the air carried the stone along. As
the impulse was transmitted from point to point in the air, however,
it weakened and the natural motion of the stone asserted itself more
and more strongly. Upward movement slowed and eventually turned
into a downward movement until finally the stone rested on the
ground once more. Not all the force of the arm or a catapult could,
in the long run, overcome the stone’s natural motion. (“Whatever
goes up must come down” we still say.)

It therefore follows that forced motion (away from the natural
place) must inevitably give way to natural motion (toward the
natural place) and that natural motion will eventually bring the
object to its natural place. Once there, since it has no place else
to go, it will stop moving. The state of rest, or lack of motion is
therefore the natural state.

This, too, seems to square with observation, for thrown objects
come to the ground eventually and stop; rolling or sliding objects
eventually come to a halt; and even living objects cannot move
forever. If we climb a mountain, we do so with an effort, and as the
impulse within our muscles fades, we are forced to rest at intervals.
Even the quietest motions are at some cost, and the impulse within
every living thing eventually spends itself. The living organism dies
and returns to the natural state of rest. (“All men are mortal.”)

But what about the heavenly bodies? The situation with respect
to them seems quite different from that with respect to objects on
earth. For one thing, whereas the natural motion of objects here
below is either upwards or downward the heavenly bodies neither
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approach nor recede but seem to move in circles about the earth.
Aristotle could only conclude that the heavens and the heavenly

bodies were made of a substance that was neither earth, water, air,
nor fire. It was, a fifth “element,” which he named “ether” (a Greek
word meaning “blazing”, the heavenly bodies being notable for the
light they emitted).

The natural place of the fifth element was outside the sphere
of fire. Why then, since they were in their natural place, did
the heavenly bodies not remain at rest? Some scholars eventually
answered that question by supposing the various heavenly bodies to
be in the charge of angels who perpetually rolled them around the
heavens, but Aristotle could not indulge in such easy explanations.
Instead, he was forced into a new assumption to the effect that the
laws governing the motion of heavenly bodies were different from
those governing the motion of earthly bodies. Here the natural
suite was rest, but in the heavens the natural state was perpetual
circular motion.

Exercises

1. In the text, translate the sentences italicized.

2. In 4-6 sentences express Aristotle’s view on motion.

3. Insert prepositions:
to move ... the sky, to be committed ... smth, apparent ... smb,

to put ... a form, to depend ... smth, to correspond ... smth, ... the
other hand, to lead ... deductions, to refer ... smth, ... the same
reasoning, to convert ... smth, ... instance, to exert an impulse ...
smth, to transmit smth ... smth, ... the long run, to give way ...
smth, to remain ... rest.

4. Give the English equivalents of:
1) явление, рассмотренное кем-либо
2) небесные тела
3) предположить, что
4) понятие о материи
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5) твердые тела
6) заслуживающий рассмотрения
7) в этом случае
8) делать умозаключения из
9) кажется разумным предположить, что
10) рассуждать подобным образом
11) соответствовать наблюдениям
12) ни приближаться, ни удаляться относительно чего-либо

5. Look up the following words in your English-English
dictionary and check their pronunciation and stress:

furthermore, sphere, scheme, assume, assumption, muscle,
muscular, climb, scholar, suit, suite.

6. Use a monolingual dictionary to check the meaning of the
words that help us make texts more coherent and make up sentences
with them within a paragraph:

however, furthermore, while, on the one hand, on the other
hand, therefore, so, thus, as, for, since (в значении поскольку, так
как).

7. Read the quotations below and answer the questions.
Homer Burton Adkins (1892-1949), American organic

chemist.
Basic research is like shooting an arrow into the air and, where

it lands, painting a target.
1. Is math research done in the same way?
Claude Bernard (1813-78), French physiologist.
The experimenter who does not know what he is looking for will

never understand what he finds.
2. Which quotation is more relevant to the humanities

(sciences)?
3. Is there any contradiction between Adkins and Bernard?
4. What was the idea behind the quotations?
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II. Falling Body

Isaak Asimov, Understanding Physics, First Mentor Printing,
April, 1969.

Let’s consider a falling body again.
An object held at some point above the ground is at rest.

If it is released, it begins to fall at once. Motion is apparently
created where it did not previously exist. But the word “created”
is a difficult one for physicists (or for that matter philosophers)
to swallow. Can anything really be created out of nothing? Or is
one thing merely changed into a second, so the second comes into
existence only at the expense of the passing into nonexistence of
the first? Or perhaps one object undergoes a change (from rest to
motion, for instance) because, and only because, another object
undergoes an opposing change (from rest to motion in the opposite
direction, for instance). In this last case, what is created is not
motion but motion plus “anti-motion”, and if the two together
cancel out to zero, there is perhaps no true creation at all.

To straighten this matter out, let’s start by trying to decide
exactly what we mean by motion.

We can begin by saying that a force certainly seems to create
motion. Applied to any body initially at rest, say to a hockey puck
on ice, a force initiates an acceleration and sets the puck moving
faster and faster. The longer the force acts, the faster the hockey
puck moves. If the force is constant, then the velocity at any given
time is proportional to the amount of the force multiplied by the
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time during which it is applied. The term impulse (I) is applied to
this product of force (f) and time (t) :

I = ft (Equation 6-1)
Since a force produces motion, we might expect that a given

impulse (that is a given force acting over a given time) would always
produce the same amount of motion. If this is so, however, then the
amount of motion cannot be considered a matter of velocity alone.
If the same force acts upon a second hockey puck ten times as
massive as the first, it will produce a smaller acceleration and in a
given time will bring about a smaller velocity than in the first case.
The quantity of motion produced by an impulse must therefore
involve mass as well as velocity. That this is indeed so is actually
implied by Equation 6-1. By Newton’s second Law we know that a
force is equal to mass times acceleration (f = ma). We can therefore
substitute ma for f in Equation 6-1 and write:

I = mat (Equation 6-2)
But by Equation v = at, we know that for any body starting at

rest the velocity (v) produced by a force is equal to the acceleration
(a) multiplied by time (t), as that at = v. It we substitute v for at
in Equation 6-2 we have:

I = mv (Equation 6-3)
It is this quantity, mv, mass times velocity that is really the

measure of the motion of a body. A body moving rapidly requires a
greater effort to stop it than does the same body moving slowly. The
increase in velocity adds to is total motion therefore. On the other
hand, a massive body moving at a certain velocity requires a greater
effort to stop it than does a light body moving at the same velocity.
The increase in mass also adds to total motion. Consequently, the
product mv has come to be called momentum (from Latin word for
“motion”).

Equation 6-3 means that an impulse (ft) applied to a body
at rest causes that body to gain a momentum (mv) equal to the
impulse. More generally, if the body is already in movement, the
application of an impulse brings about a change of momentum,
equal to the impulse. In brief, impulse equals change of momentum.

The units of impulse must be those of force multiplied by those
of time, according to Equation 6-1, or those of mass multiplied
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by those of velocity according to equation 6-3. In the mks system,
the units of force are newtons, so impulse may be measured in
newton − sec. The units of mass are kilograms, however, and the
units of velocity an meters per second, so the units of impulse (mass
times velocity) are kg−m/sec. However, a newton has been defined
as a kg −m/sec2.

A newton-sec, therefore, is a kg−m−sec/sec2, or a kg−m/sec.
Thus the units of I considered as ft are the same as the units of
I considered as mv. In the cgs system, it is easy to show the units
of impulse are dyne− sec, or gm− cm/sec, and these are identical
also.

Exercises
1. Translate the following sentences into Russian, paying

attention to the italicized words and structures:
1) The longer the force acts, the faster the hockey puck moves.
2) Since a force produces motion, we might expect that a given

impulse (that is a given force acting over a given time) would always
produce the same amount of motion.

3) If the same force acts upon a second hockey puck ten times
as massive as the first, it will produce a smaller acceleration and
in a given time will bring about a smaller velocity than in the first
case.

4) It is this quantity – mass times velocity – that is really the
measure of the motion of a body.

5) The units of impulse must be those of force multiplied by
those of time.

2. Specify the italicized verbal forms in the sentences below and
translate them into Russian:

1) Let’s consider a falling body.
2) An object held at some point above the ground is at rest.
3) Or perhaps one object undergoes a change because, and only

because, another object undergoes an opposing change.
4) ... for any body starting at rest the velocity (v) produced

by a force is equal to the acceleration (a) multiplied by time (t)...
at = v.
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3. Give the English equivalents of the following Russian terms:
Движение, сила, тело, ускорение, скорость, импульс, произ-

ведение, единица измерения.

4. Add the missing letters to complete the words below:
Eq...ation, rel......se, ac......leration, prev...o...sly, ph...si...ist,

ap...ar...ntly, exist...nce, op...o...ite, for...e, init...ate, v...lo...ity,
m...lt...pl...

5. Remember the following word combinations and set expressions.
1) To come into existence – возникать
2) In the opposite direction – в противоположном направле-

нии
3) To produce / initiate acceleration – вызывать ускорение
4) To produce velocity – приводить к появлению скорости
5) At some point – в некоторой точке
6) To undergo a change – претерпевать изменения
7) From rest to motion – из состояния покоя в состояние дви-

жения
8) To produce/ create motion – порождать движение
9) To straighten this matter out – для того чтобы прояснить

этот момент
10) To gain a momentum – получать импульс
11) To be in movement – находиться в движении
12) To be equal to – быть равным чему-то
13) To apply to a body – прикладывать к объекту (например,

силу)
14) An increase in velocity – увеличение скорости
15) To act upon a body – действовать на тело (о силе)
16) To substitute A for B – заменять B на A

Now use them in the sentences below:
1. Увеличение скорости влияет на состояние движущегося

тела. 2. По-видимому, движение возникает там, где его ранее
не было. 3. Согласно второму закону Ньютона сила равна про-
изведению массы и ускорения. 4. Один объект претерпевает из-
менение (например, переходит из состояния покоя в состояние
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движения) только потому, что какой-то другой объект претер-
певает противоположное изменение (т.е., например, переходит
из состояния движения в состояние покоя и движется в проти-
воположном направлении). 5. Для того чтобы прояснить этот
вопрос, необходимо понять, что означает термин «движение». 6.
Сила, приложенная к телу, приводит тело, находящееся в покое,
в состояние движения.

6. Remember the following idioms and expressions:
1) At rest – в состоянии покоя
2) On the one hand, ... on the other hand – с одной стороны,

... с другой стороны
3) For that matter – если уж на то пошло
4) At all – совсем, полностью
5) At once – сразу
6) At the expense of smth – за счет чего-либо
7) For instance – например
8) To be proportional to smth – быть пропорциональным

чему-то
9) At any given time – в любой заданный момент времени
10) Multiplied by – умноженный на
11) Over a given time – в течение данного периода времени
12) According to/ By Newton’s second law – в соответствии со

вторым законом Ньютона
13) To move at the same velocity – двигаться с той же скоро-

стью
14) Per second – в секунду

Add the missing prepositions:
1. What is created is not motion but motion plus “anti-motion”,

and if the two together cancel out to zero, there is perhaps no true
creation ... all. 2. He wasn’t right. Neither was I, ... that matter.
3. If the force is constant, then the velocity ... any given time is
proportional ... the amount of the force multiplied ... the time
during which it is applied. 4. A force acts ... a given time. 5. ...
Newton’s second law we know that a force is equal to mass times
acceleration f = ma. 6. ... the other hand, a massive body moving
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... a certain velocity requires a greater effort to stop it than does
a light body moving ... the same velocity. 7. The units of mass are
kilograms, and the units of velocity are metres ... second.

Now translate the sentences using the above expressions:
1. Предмет, подвешенный в некоторой точке над землей, на-

ходится в состоянии покоя. 2. Если его отпустить, он сразу же
начнет падать. 3. Одно явление возникает за счет того, что
какое-то другое явление перестало существовать.

7. Find the following phrasal verbs in the text and try to guess
their meaning.

1) To add to 2) to bring about 3) to cancel out

Now use them to complete the sentences below:
1. Our attempts to prove the theorem failed, and this only ...

... our difficulties. 2. What ... ... the change in the curriculum? 3.
The advantages and disadvantages of this scientific approach seem
to ... each other ....

8. Explain the use of the articles in the following sentences:
1) “Сan anything really be created out of nothing? Or is one

thing merely changed into a second, so the second comes into
existence only at the expense of the passing into the non-existence
of the first?”

2) “If the same force acts upon a second hockey puck ten times
as massive as the first, it will produce a smaller acceleration and
in a given time will bring about a smaller velocity than in the first
case.”

3) “A body moving rapidly requires a greater effort to stop it
than does the same body moving slowly.”

9. While reading the text you might have noticed that the ideas
are linked by means of the so-called connectors, or linking words.
There are a number of such linking devices that help to connect
ideas and convey a variety of senses.

16



Thus, to compare two points in a text or indicate that they
are different you may write: likewise/ similarly/ like/ in exactly
the same way.... Or you may write:alternatively, as distinct from,
as opposed to, conversely, in/by contrast, however, on the other
hand, unlike, whereas, whilst/while. If you need to give examples
or more detail of a point, you may use: e.g., for example, for
instance, such as; as an example, consider...; examples include...;
by way of illustration...; the following may serve as an example; this
can be exemplified/illustrated as follows:...; to exemplify/illustrate
this point we may consider... or a case in point, in particular,
i.e., namely, specifically. Other examples of connectors include:
beyond doubt/ question, undoubtedly, unquestionably, there can be
no question/ doubt that..., it is undeniable that...; as a rule, by and
large, generally speaking, in general, in most cases, on the whole.

(See Macmillan English Dictionary for Advanced Learners.
International Student Edition, pp. 279, 476)

Now find other linking words and phrases in the text and write
a summary of the article. Remember to use linking devices to make
it logical.

10. Read the quotations and answer the questions.
Josiah Willard Gibbs (1839-1903), American theoretical

physicist and chemist.
A mathematician may say anything he pleases, but a physicist

must be at least partially sane.
Georg Cantor (1845-1918), German mathematician.
The essence of mathematics lies precisely in its freedom.
1. What kind of freedom did Cantor mean?
2. Do you think Gibbs’ quotation is insulting? Why, why not?
3. Try to explain what Gibbs meant.
4. Do you think there is any connection between the quotations?
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III. Conservation
of Momentum

Isaak Asimov, Understanding Physics, First Mentor Printing,
April, 1969.

Imagine a hockey puck of mass m speeding across the ice at
a velocity, v. Its momentum is mv. Imagine another hockey puck
of the same mass moving at the same speed but in the opposite
direction. Its velocity is therefore is −v and its momentum is −mv.
Momentum, you see, is a vector, since it involves velocity, and not
only has quantity but direction. Naturally, if we have two bodies
with momenta in opposite directions, we can set one momentum
equal to some positive value and the other equal to some negative
value.

Suppose now that the two hockey pucks are rimmed with a layer
of glue powerful enough to make them instantly stick together on
contact. And suppose they do make contact head-on. When that
happens, they would come to an instant halt.

Has the momentum been destroyed? Not at all. The total
momentum of the system was mv + (−mv), or 0, before the
collision and 0 + 0, or (still) 0, after the collision. The momentum
was distributed among the parts of the system differently before and
after the collision, but the total momentum remained unchanged.

Suppose that instead of sticking when they collided (an
inelastic collision) the two pucks bounced with perfect springiness

18



(an elastic collision). It would then happen that each puck would
reverse directions. The one with the momentum mv would now
have the momentum −mv and vice versa. Instead of the sum
mv + (−mv), we would have the sum (−mv) + mv. Again there
would be a change in the distribution of momentum, but again the
total momentum of the system would be unchanged.

If the collision were neither perfectly elastic nor completely
inelastic, if the puck, bounced apart but only feebly, one puck might
change from mv to −0.2mv, while the other changed from −mv to
0.2mv.The final sum would still be zero.

This would still hold true if the pucks met at an angle, rather
than head-on, and bounced glancingly. If they met at an angle, so
their velocities were not in exactly opposite directions, the two
momenta would not add up to zero, even though the velocities
of the two pucks were equal. Instead the total momentum of the
system would be arrived at by vector addition of the two individual
momenta. The two pucks would then bounce in such a way that the
vector addition of the two momenta after the collision would yield
the same total momentum as before. This would also be true if a
moving puck struck a puck at rest a glancing blow. The puck at rest
would be placed in motion, and the originally moving puck would
change its direction; however, the two final momenta would add up
to the original.

Matters would remain essentially unchanged even it the two
pucks were of different masses. Suppose one puck was moving to
the right at a given speed and had a momentum of mv, while
another, three times as massive, was moving at the same speed
to the left and had, therefore, a speed of −3mv. If the two stuck
together after a head-on collision, the combined pucks (with a total
mass of 4m) would continue moving to the left – the direction in
which the more massive puck had been moving – but at half the
original velocity (−v/2). The original momentum of the system was
mv + (−3mv), or −2mv. The final momentum of the system was
(4m)(−v/2), or −2mv. Again, the total momentum of the system
would be unchanged.

And what if momentum is seemingly created? Let us consider
a bullet initially at rest – and with a momentum, therefore, of 0
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– which is suddenly fired out of a gun and moves to the right at
high velocity. It now has considerable momentum (mv). However,
the bullet is only part of the system. The remainder of the system,
the gun, must gain −mv by moving in the opposite direction. If
the gun has (n) times the mass of the bullet, it must move in
the opposite direction with l/n times the velocity of the speeding
bullet. The momentum of the gun (minus the bullet) would then
be (nm)(−v/n) or −mv. (If the gun were suspended freely when
it was fired, its backward jerk would be clearly visible. When fired
in the usual manner its backward motion is felt as recoil.) The
total momentum of gun plus bullet was therefore 0 before the gun
was fired and 0 after it was fired, though here the distribution of
momentum among the parts of the system varied quite a bit before
and after firing.

In short, all the experiments we can make will bring us to the
conclusion that:

The total momentum of an isolated system of bodies remains
constant.

This is called the law of conservation of momentum. (Some
thing that is “conserved” is protected, guarded, or kept safe from
loss.)

Of course, it is impossible to prove a generalization by
merely enumerating isolated instances. No matter how often
you experiment and find that momentum is conserved, you cannot
state with certainty that it will always be conserved. At best,
one can only say, as experiment after experiment follows the law
and as no experiment is found to contradict it, that the law is
increasingly probable. It would be far better if one could show the
generalization to be a consequence of another generalisation that is
already accepted.

For instance, suppose two bodies of any masses and moving at
any velocities collide at any angle with any degree of elasticity.

At the moment of collision, one body exerts a force (f) on the
second. By Newton’s third law, the second body exerts an equal and
opposite force (−f) on the first. The force is exerted only while the
two bodies remain in contact. The time (t) of contact is obviously
the same for both bodies, for when the first is no longer in contact
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with the second; the second is no longer in contact with the first.
This means that the impulse of the first body on the second is ft,
and that of the second on the first is −ft.

The impulse of the first body on the second imparts a change in
momentum mv to the second body. But the impulse of the second
body on the first, being exactly equal in quantity but opposite in
sign, must impart a change in momentum −mv to the first. The
changes in momentum may be large or small depending on the
size of the impulse, the angle of collision, and the elasticity of the
material; however, whatever the change in momentum of one, the
change in the other is equal in size and opposition in direction. The
total momentum of the system must remain the same.

Thus, the law of conservation of momentum can be derived
from Newton’s third law of motion. In actual fact, however, it was
not, for the law of conservation of momentum was first enunciated
by an English mathematician, John Wallis (1616-1703), in 1671, a
dozen years before Newton published his laws of motion. One could,
indeed, work it the other way, and derive the third law of motion
from the law of conservation of momentum.

At this point you might feel that if the physicist proves the
conservation of momentum from the third law of motion, and then
proves the third law of motion from the conservation of momentum,
he is actually arguing in a circle and not proving anything at all.
He would be if that were what he is doing, but he is not.

It is not so much a matter of “proving” as of making an
assumption and demonstrating a consequence. One can begin by
assuming the third law of motion and then showing that the law of
conservation of momentum is a consequence of it. Or one can begin
by assuming the law of conservation of momentum and showing
that the third law is the consequence of that.

The direction in which you move is merely a matter of
convenience. In either case, no proof is involved and no necessary
truth. The whole structure rests on the fact that no one in nearly
three centuries has been able to produce a clear-cut demonstration
that a system exists, or can be prepared, in which either the third
law of motion or the law of conservation of momentum is not
obeyed. Such a demonstration may be made tomorrow, and the
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foundations of physics may have to be modified as a consequence;
but by now it seems very unlikely that this will happen.

And yet it may be that with a little thought we might think of
cases where the law is not obeyed. For instance, suppose a billiard
ball hits the rim of the billiard table squarely and rebounds along its
own line of approach. Its velocity v becomes −v after the rebound,
and since its mass remains unchanged, its original momentum mv
has become −mv. Isn’t that a clear change in momentum?

Yes, it is, but the billiard ball does not represent the entire
system. The entire system includes the billiard table that exerted
the impulse that altered the billiard ball’s momentum. Indeed, since
the billiard table is fixed to the ground by frictional forces too
large for the impact of the billiard ball to overcome, it includes the
entire planet. The momentum of the earth changes just enough to
compensate for the change in the momentum of the billiard ball.
However, the mass of the earth is vastly larger than that of the
billiard ball, and its change in velocity is therefore correspondingly
smaller – far too small to detect by any means known to man.

Yet one might assume that if enough billiard balls going in the
same direction were bumped into enough billiard tables, at long,
long last, the motion of the earth would be perceptibly changed.
Not at all! Each rebounding billiard ball must strike the opposite
rim of the table, or your hand, or some obstacle. Even if it comes
to a slow halt through friction, that will be like striking the cloth
of the table little by little. No matter how the billiard ball moves
it will have distributed its changes in momentum equally in both
directions before it comes to a halt, if only itself and the earth are
involved.

A more general way of putting it is that the distribution of
momentum among the earth and all the movable objects on or near
its surface may vary from time to time, but the total momentum,
and therefore the net velocity of the earth plus all those movable
objects (assuming the total mass to remain constant), must remain
the same. No amount or kind of interaction among the components
of a system can alter the total momentum of that system.

And now the solution to the problem of the falling body
with which I opened the chapter is at hand. As the body falls it
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gains momentum (mv), this momentum increasing as the velocity
increases. The system, however, does not consist of the falling
body alone. The gravitational force that brings about the motion
involves both the body and the earth. Consequently, the earth
must gain momentum (−mv) by rising to meet the body. Because
of the earth’s huge mass, its upward acceleration is vanishingly
small and can be ignored in any practical calculation. Nevertheless,
the principle remains. Motion is not created out of nothing when
a body falls. Rather, both the motion of the body and the anti-
motion of the earth are produced, and the two cancel each other
out. The total momentum of earth and falling body, with respect
to each other, is zero before the body starts falling, is zero after it
completes its fall, and is zero at every instant during its fall.

Exercises

1. In the text, translate the sentences italicized.

2. Insert prepositions:
... a velocity, the two momenta add ... ... zero, ... rest, to move

... the right ... a given speed, to exert a force ... a body, ... Newton’s
third law, to depend ... the size, to derive ... Newton’s third law, to
detect ... any means known to man, to vary ... time .. time, solution
... a problem.

3. Give the English equivalents of:
1) предположим, что
2) полный импульс
3) неупругое столкновение
4) и наоборот
5) это выполняется, если
6) в три раза тяжелее
7) со скоростью в два раза меньшей первоначальной
8) довольно сильно отличаться (до и после чего-либо)
9) вкратце, одним словом
10) определенно утверждать
11) в лучшем случае
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12) в любом из двух случаев
13) подчиняться закону
14) вызывать движение
15) ускорение пренебрежимо мало

4.Using your English-English dictionary, check the pronunciation
and stress of the words below:

distribute, vice versa, yield, merely, consequence, sign, either.

5. Make up sentences of your own with the following words:
to suppose, to be distributed, to collide, to hold true, at rest, to

have n times the mass of smth, to carry out an experiment, to state
with certainty, to contradict, by some law, to derive, to overcome,
to interact.

6. Answer the following questions:
1) Do you think the author’s method to arrive at the law of

conservation of momentum is satisfactory?
2) Could you suggest another method?
3) Could you think of other examples illustrating the law in

question?
4) Could you give an example (other than in the text) that

seemingly disobeys the law of conservation of momentum?

7. Read the quotation below and answer the questions.
Karl Raimund Popper (1902-94), Austrian-born British

philosopher of science.
What really makes science grow is new ideas, including false

ideas.
1. How can in principle false ideas help science develop?
2. Give examples from physics, chemistry and other sciences

that support Popper’s ideas.
3. Is it possible to apply the quotation to mathematics?
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IV. Mechanical Energy

Isaak Asimov, Understanding Physics, First Mentor Printing,
April, 1969.

It is neat and pleasant to see that the work put into one end
of a lever is equal to the work coming out of the other end and we
might fairly suspect that there was such a thing as “conservation of
work”.

Unfortunately, such a possible conservation law runs into a snag
almost at once. After all, where did the work come from that was
put into the lever? If one end of the lever was manipulated by a
human being who was using the lever to lift a weight, the work
came from that done by the moving human arm.

And where does the work of the moving arm come from? A
man sitting quietly can suddenly move his arm and do work where
no work had previously seemed to exist. This runs counter to the
notion of conservation in which the phenomenon being conserved
can be neither created nor destroyed.

If one is anxious to set up a conservation law involving work,
therefore, one might suppose that work, or something equivalent
to work, could be stored in the human body (and perhaps in other
objects) and that this work-store could be called upon at need and
converted into visible, palpable work.

At first blush such a work-store might have seemed to be
particularly associated with life, since living things seemed filled
with this capacity to do work, whereas dead things, for the most
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part, lay quiescent and did not work. The German philosopher and
scientist Gottfried Wilhelm Leibnitz (1646-1716), who was the first
to get a clear notion of work in the physicist’s sense, chose to call
this work-store vis viva (Latin for “living force”). However, it is
clearly wrong to suppose that work is stored only in living things;
as a matter of fact, the wind can drive ships and running water can
turn millstones, and in both cases force is being exerted through
a distance. Work, then, was obviously stored in inanimate objects
as well as in animate ones. In 1807, the English physician Thomas
Young (1773- 1829) proposed the term energy for this work-store.
This is from Greek words meaning “work-within” and is a purely
neutral term that can apply to any object, living or dead.

This term gradually became popular and is now applied to
any phenomenon capable of conversion into work. There are many
varieties of such phenomena and therefore many forms of energy.

The first form of energy to be clearly recognized as such, perhaps,
was that of motion itself. Work involved motion (since an object
had to be moved through a distance), so it was not surprising that
motion could do work. It was moving air, or wind, that drove a ship,
and not still air; moving water that could turn a millstone, and not
still water. It was not air or water that contained energy then,
but the motion of the air or water. In fact, anything that moved
contained energy, for if the moving object, whatever it was, collided
with another, it could transfer its momentum to that second object
and set its mass into motion; it would thus be doing work upon it,
for a mass would have moved through a distance under the urging
of a force.

The energy associated with motion is called kinetic energy, a
term introduced by the English physicist Lord Kelvin (1824-1907)
in 1856. The word “kinetic” is from a Greek word meaning “motion.”

Exactly how much kinetic energy is contained in a body moving
at a certain velocity, v? To determine this, let us assume that in
the end we are going to discover that there exists a conservation
law for work in all its forms – stored and otherwise. In that case,
we can be reasonably confident that if we find out how much work
it takes to get a body moving at a certain velocity, v, then that
automatically will be the amount of work it can do on some other
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object through its motion at that velocity. In short, that would be
its kinetic energy.

To get a body moving in the first place takes a force, and that
force, by Newton’s second law, is equal to the mass of the moving
body multiplied by its acceleration:

f = ma (Equation 7-1)
The body will travel for a certain distance, d, before the

acceleration brings it up to the velocity, v, which we are inquiring
into. The work done on the body to get it to that velocity is the
force multiplied by the distance. Expressing the force as ma we
have:

w = mad (Equation 7-2)
Now much earlier in the book, in discussing Galileo’s experiments

with falling bodies, we showed that v = at - that velocity, in other
words, is the product of acceleration and time. This is easily
rearranged to: t = v/a.

We also pointed out in discussing Galileo’s experiments that
where there is uniform acceleration,

d = 1/2at2 where d is the distance covered by the moving body.
If, in place of t in the relationship just given, the quantity v/a

is substituted, we have:
d = 1/2a(v/a)2 = 1/2(v2)/a (Equation 7-3)
Let us now substitute this value for d in Equation 7-2 which

becomes:
w = 1/2(mav2)/a = 1/2mv2 (Equation 7-4)
This is the work that must be done upon a body of mass m to

get it to move at a velocity v, and it is therefore the kinetic energy
contained by the body of that mass and with that velocity. It we
symbolize kinetic energy as e(k) we can write:

ek = 1
2mv

2 (Equation 7-5)
I have already pointed out that work has the units of mass

multiplied by those of velocity squared and, as is clear from
Equation 7-5, so has kinetic energy. Therefore, kinetic energy can
be measured in joules or ergs, as can work. Indeed, all forms of
energy can be measured in these units.

We might now imagine that we can set up a conservation law in
which kinetic energy can be converted into work and vice versa, but
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in which the sum of kinetic energy and work in any isolated system
must remain constant. Such a conservation law will not, however,
hold water, as can easily be demonstrated.

An object thrown up into the air has a certain velocity
and therefore a certain kinetic energy as it leaves the hand (or
the catapult or the cannon). As it climbs upward, its velocity
decreases because of the acceleration imposed upon it by the
earth’s gravitational field. Kinetic energy is therefore constantly
disappearing and, eventually, when the ball reaches maximum
height and comes to a halt, its kinetic energy is zero, and has
therefore entirely disappeared.

One might suppose that the kinetic energy has disappeared
because work has been done on the atmosphere, and that therefore
kinetic energy has been converted into work. However, this is not
an adequate explanation of events, for the same thing would happen
in a vacuum.

One might next suppose that the kinetic energy had disappeared
completely and beyond redemption, without the appearance of
work, and that no conservation law involving work, and energy was
therefore possible. However, after an object has reached maximum
height and its kinetic velocity has been reduced to zero, it begins
to fall again, still under the acceleration of gravitational force. It
falls faster and faster, gaining more and more kinetic energy, and
when it hits the ground (neglecting air resistance) it possesses all
the kinetic energy with which it started.

Rather than lose our chance at a conservation law, it seems
reasonable to assume that energy is not truly lost as an object rises
upward, but that it is merely stored in some form other than kinetic
energy. Work must be done on an object to lift it to a particular
height against the pull of gravity, even if once it has reached that
height it is not moving. This work must be stored in the form of an
energy that it contains by virtue of its position with respect to the
gravitational field.

Kinetic energy is thus little by little converted into “energy of
position” as the object rises. At maximum height, all the kinetic
energy has become energy of position. As the object falls once more,
the energy of position is converted back into kinetic energy. Since
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the energy of position has the potentiality of kinetic energy, the
Scottish engineer William J. M. Rankine (1820-1872) suggested, in
1853, that it be termed potential energy, and this suggestion was
eventually adopted.

To lift a body a certain distance (d) upward, a force equal to its
weight must be exerted through that distance. The force exerted
by a weight is equal to mg. where m is mass and g the acceleration
due to gravity (see Equation 5-1). If we let potential energy be
symbolized as e(p) we have:

ep = mgd (Equation 7-6)
If all the kinetic energy of a body is converted into potential

energy, then the original ek is converted into an equivalent e(p) or
combining Equations 7-5 and 7-6:

1/2mv2 = mgd

or simplifying, and assuming g to be constant.
v2 = 2gd = 19.6d (Equation 7-7)
From this relationship one can calculate (neglecting air

resistance) the height to which an object will rise if the initial
velocity with which it is propelled upward is known. The same
relationship can be obtained from the equations arising out of
Galileo’s experiments with falling objects.

Kinetic energy and potential energy are the types of energy
made use of by machines built up out of levers, inclined planes
and wheels, and the two forms may therefore be lumped together
as mechanical energy. As long ago as the time of Leibnitz it was
recognized that there was a sort of “conservation of mechanical
energy,” and that (if such extraneous factors as friction and air
resistance were neglected) mechanical energy could be visualized as
bouncing back and forth between the kinetic form and the potential
form, or between either and work, but not (taken in all three forms)
as appearing from nowhere or disappearing into nowhere.
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Exercises

1. In the text, translate the sentences italicized.

2. Insert prepositions where necessary:
to run ... a snag, to run counter ... a notion, to set ... a law,

equivalent ... smth, to convert smth ... smth, ... the most part,
... a matter ... fact, capable ... smth, to set a mass ... motion, to
move ... a velocity, to be equal ... smth, to rearrange ... some form,
to substitute smth ... smth, to do work ... some object, velocity
reduces ... zero, ... virtue of smth, position ... respect ... smth, ... the
gravitational field, ... maximum height, acceleration due ... gravity,
to multiply smth ... smth.

3. Give the English equivalents of:
1) производить работу над чем-либо
2) установить (вывести) закон
3) при необходимости
4) по большей части
5) фактически, на самом деле
6) физическое явление
7) неподвижный воздух
8) привести тело в движение
9) количество работы
10) произведение ускорения и времени
11) расстояние, пройденное телом
12) как видно из уравнения
13) измерять в этих единицах
14) полностью исчезать (об энергии)
15) мало-помалу, постепенно
16) начальная энергия
17) начальная скорость
18) наклонная плоскость
19) пренебрегать сопротивлением
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4.Using your English-English dictionary, check the pronunciation
and stress of the words below:

lever, neither ... nor, physicist, inanimate (adj), joule, vice versa,
climb, merely, virtue, assume, assumption, kinetic.

5. Describe the contributions of Leibnitz, Young, Kelvin
and Rankine to the development of the “energy” concept in 6-
9 sentences.

6. Read the quotations below and answer the questions.
Anonymous
Fiction tends to become ‘fact’ simply by serial passage via the

printed page.
Reijer Hooykaas (1906-94), Dutch historian of science.
The history of science shows so many examples of the ‘irrational’

notions and theories of today becoming the ‘rational’ notions and
theories of tomorrow, that it seems largely a matter of being
accustomed to them whether they are considered rational or not,
natural or not.

1. Could you give any examples of such notions and theories
(not necessarily mathematical)?

2. Do you think this quotation may be applied to mathematics?
To the sciences? To the humanities?

3. Could you give any examples?
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V. Conservation
of Energy

Isaak Asimov, Understanding Physics, First Mentor Printing,
April, 1969.

Unfortunately, the “law of conservation of mechanical energy,”
however neat it might seem under certain limited circumstances,
has its imperfections, and these at once throw it out of court as a
true conservation law.

An object hurled into the air with a certain kinetic energy,
returns to the ground without quite the original kinetic energy.
A small quantity has been lost through air resistance. Again,
if an elastic object is dropped from a given height, it should (if
mechanical energy is to be truly conserved) bounce and return to
exactly its original height. This it does not do. It always returns to
somewhat less than the original height, and if allowed to drop again
and bounce and drop again and bounce, it will reach lower and
lower heights until it no longer bounces at all. Here it is not only
the air resistance that interferes but also the imperfect elasticity
of the body itself. Indeed, if a lump of soft clay is dropped, its
potential energy is converted to kinetic energy, but at the moment
it strikes the ground with a non-bouncing splat that kinetic energy
is gone – and without any reformation of potential energy. To all
appearances, mechanical energy disappears in these cases.
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One might argue that these losses of mechanical energy are due
to imperfections in the environment. If only a frictionless system
were imagined in a perfect vacuum, if all objects were completely
elastic, then mechanical energy would be conserved.

However, such an argument is quite useless, for in a true
conservation law the imperfections of the real world do not affect
the law’s validity. Momentum is conserved, for instance regardless
of friction, air resistance, imperfect elasticity or any other departure
from the ideal.

If we still want to seek a conservation law that will involve
work we must make up our minds that for every loss of mechanical
energy there must be a gain of something else. That something
else is not difficult to find. Friction, one of the most prominent
imperfections of the environment, will give rise to heat, and if the
friction is considerable, the heat developed is likewise considerable.
(The temperature of a match-head can be brought to the ignition
point in a second by rubbing it against a rough surface.

Conversely, heat is quite capable of being turned into mechanical
energy. The heat of the sun raises countless tons of water vapor
kilometres high into the air, so that all the mechanical energy of
falling water (where as rain cataracts or quietly flowing rivers) must
stem from the sun’s heat. Furthermore, the eighteenth century saw
man deliberately convert heat into mechanical energy by means of
a device destined to reshape the world. Heat was used to change
water into steam in a confined chamber, and this steam was then
used to turn wheels and drive pistons. (Such a device is, of course,
a steam engine.)

It seemed clear, therefore, that one must add the phenomenon
of heat to that of work, kinetic energy and potential energy, in
working out a true conservation law. Heat, in short, would have to
be considered another form of energy.

But if that is so, then any other phenomenon that could give
rise to heat would also have to be considered a form of energy.
An electric current can heat a wire and a magnet can give rise to
an electric current, so both electricity and magnetism are forms of
energy. Light and sound are also forms of energy, and so on.
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If the conservation law is to encompass work and all forms of
energy (not mechanical energy alone), then it had to be shown that
one form of energy could be converted into another quantitatively.
In other words, in such energy-conversions all energy must he
accounted for; no energy must be completely lost in the process,
no energy created.

This point was tested thoroughly over a period of years in the
1840’s by an English brewer named James Prescott Joule (1818-
1889), whose hobby was physics. He measured the heat produced
by an electric current, that produced by the friction of water against
glass, by the kinetic energy of turning paddle wheels in water, by
the work involved in compressing gas, and so on. In doing so, he
found that a fixed amount of one kind of energy was converted into
a fixed amount of another kind of energy, and that if energy in all
its varieties was considered; no energy was either lost or created. It
is in his honor that the unit of work and energy in the mks system
is named the “joule.”

In a more restricted sense, one can consider that Joule proved
that a certain amount of work always produced a certain amount
of heat. Now the common British unit of work is the “foot-pound”
— that is, the work required to raise one pound of mass through a
height of one foot against the pull of gravity. The common British
unit of heat is the “British thermal unit” (commonly abbreviated
“Btu”) which is the amount of heat required to raise the temperature
of one pound of water by 1o Fahrenheit. Joule and his successors
determined that 778 foot-pounds are equivalent to 1 Btu, and this
is called the mechanical equivalent of heat.

It is preferable to express this mechanical equivalent of heat in
the metric system of units. A foot-pound is equal to 1.356 joules, so
778 foot-pounds equal 1055 joules. Furthermore, the most common
unit of heat in physics is the calorie, which is the amount of heat
required to raise the temperature of one gram of water by 10
Centigrade. One Btu is equal to 252 calories. Therefore, Joule’s
mechanical equivalent of heat can be expressed as 1055 joules equal
252 calories, or 4.18 joules = 1 calorie.

Once this much was clear, it was a natural move to suppose that
the law of conservation of mechanical energy should be converted
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into a law of conservation of energy, in the broadest sense of the
word – including under “energy,” work, mechanical energy, heat,
and everything else that could be converted into heat. Joule saw
this, and even before his experiments were far advanced, a German
physicist named Julius Robert von Mayer (1814-1878) maintained it
to be true. However, the law was first explicitly stated in form clear
enough and emphatic enough to win acceptance by the scientific
community in 1847 by the German physicist and biologist Hermann
von Helmholtz (1821-1894), and it is he who is generally considered
the discoverer of the law.

The law of conservation of energy is probably the most
fundamental of all the generalisations made by scientists and
the one they would be most reluctant to discard. As far as we can
tell it holds through all the departures of the real universe from
the ideal models set up by scientists; it holds for living systems
as well as nonliving ones; and for the tiny world of the subatomic
realm as well as for the cosmic world of the galaxies. At least
twice in the last century phenomena were discovered which seemed
to violate the law, but both times physicists were able to save
matter by broadening the interpretation of energy. In 1905, Albert
Einstein showed that mass itself was a form of energy; and in
1931, the Austrian physicist Wolfgang Pauli (1900-1958) advanced
the concept of a new kind of subatomic particle, the neutrino, to
account for apparent departures from the law of conservation of
energy.

Nor was this merely a matter of saving appearances or of
patching up a law that was springing leaks. Each broadening of
the concept of conservation of energy fit neatly into the expanding
structure of twentieth-century science and helped explain a host
of phenomena; it also helped predict (accurately) another host
of phenomena that could not have been explained or predicted
otherwise. The nuclear bomb, for instance, is a phenomenon that
can only be explained by the Einsteinian concept that mass is a
form of energy.
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Exercises

1. In the text, translate the sentences italicized.

2. Insert prepositions where necessary:
... certain circumstances, regardless ... friction, departure ... the

ideal, to give rise ... heat, to rub ... a rough surface, ... other words,
friction of water ... glass, ... a more restricted sense, to be equal ...
smth, to equal ... smth, to raise the temperature ... 10 degrees, ...
least, to account ... departures from the law.

3. Give the English equivalents of:
1) при определенных обстоятельствах
2) упругий объект
3) неабсолютная упругость
4) кинетическая энергия исчезает
5) по всей видимости
6) можно утверждать, что
7) трение значительно
8) образовавшееся тепло
9) тереть о поверхность
10) преобразовывать тепло в механическую энергию посред-

ством (с помощью) машины (устройства)
11) электрический ток
12) другими словами
13) сжимать газ
14) увеличить температуру газа на 10 градусов
15) явно, четко формулировать
16) довольно понятный
17) делать обобщения
18) насколько мы знаем
19) противоречить закону
20) точно предсказывать
21) последовательность действий
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4.Using your English-English dictionary, check the pronunciation
and stress of the words below:

circumstance, validity, ignition, surface, ton, encompass,
thoroughly, tiny, accurate, bomb.

5. Make sure you pronounce the following surnames correctly:
Joule, Fahrenheit, Mayer, Helmholtz, Einstein, Pauli.

6. Write a summary of the text in 4-5 sentences.

7. Read the quotations below. Answer the questions.
Patrick Maynard Stuart Blackett (Lord Blackett) (1897-

1974), British physicist.
A first-rate laboratory is one in which mediocre scientists can

produce outstanding work.
Ernest Rutherford (Baron Rutherford of Nelson) (1871-

1937), New Zealand-born British physicist.
We haven’t the money, so we’ve got to think.
1. Do you think the scentists spoke about the same?
2. Is it possible nowadays to develop science without relying on

sophisticated equipment, etc.?
3. In which sciences is it more likely?
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VI. Coriolis Forces

I.

Many interesting phenomena occurring on the Earth are
explained by the action of Coriolis forces. The Earth is a sphere
and this makes the effects of Coriolis forces more complicated.
These forces will not only influence motion along the Earth’s
surface, but also the falling of bodies to the Earth.

Does a body fall exactly along a vertical? Not quite. Only at a
pole does a body fall exactly along a vertical. Here the direction
of the motion and the Earth’s axis of rotation coincide, so there
is no Coriolis force. The situation is different at the equator; here
the direction of the motion forms right angles with the Earth’s
axis. If looked upon from the North Pole, the Earth’s rotation will
appear to be counterclockwise. Hence, a freely falling body should
be deflected to the right of its path, i.e. to the East. The magnitude
of this eastward deflection, the greatest at the equator, decreases
to zero as the poles are approached.

Let us compute the magnitude of the deflection at the equator.
Since a freely falling body moves with a uniform acceleration,
the Coriolis force increases as the Earth is approached. We shall
therefore restrict ourselves to an approximate computation. If the
body falls from a height, say, of 80 m, then its fall will last about
4 sec, according to the formula t =

√
2h/g. The average speed for

the fall will be equal to 20 m/sec.
This is the speed that we shall substitute in our formula,

38



4πnv, for the Coriolis acceleration. Let us convert the value n = 1
revolution in 24 hours to the number of revolutions per second;
24x3600 seconds are contained in 24 hours, so n is equal to 1/86
400 rev/sec; consequently, the acceleration created by the Coriolis
force is equal to π/1080 m/sec2. The distance covered during 4
sec with such an acceleration is equal to (1/2)(π/1080) ∗ 42 = 2.3
cm. This is precisely the magnitude of the eastward deflection
in our example. An exact computation, taking into account the
non-uniformity of the fall, yields a somewhat different number -
3.1 cm.

While the deflection of a freely falling body is maximal at the
equator and equal to zero at the poles, we shall see the opposite
picture in the case of the deflection of a body, moving in a horizontal
plane, under the action of a Coriolis force.

A body moving along a horizontal site on the North or South
pole will be deflected to the right of its motion’s direction by the
Coriolis force at the North Pole, and to the left at the South.
Using the same formula for the Coriolis acceleration, the reader
can calculate without difficulty that a bullet fired from a rifle with
an initial speed of 500 m/sec will be deflected from the target by 3.5
cm in a horizontal plane during one second (i.e. while it travels 500
m).

But why should the deflection in a horizontal plane at the
equator be equal to zero? Without rigorous proofs, it is clear that
this should be the case. At the North Pole a body is deflected to the
right of the motion’s path, at the South, to the left; hence, half-way
between the poles, i.e. at the equator, the deflection will be equal
to zero.

II.

Let us recall the experiment with Foucault’s pendulum.
A pendulum oscillating at a pole preserves the plane of its
oscillations. The Earth, rotating, moves away from under the
pendulum. This is how a stellar observer explains Foucault’s
experiments. But an observer rotating together with the Earth
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explains this experiment by means of Coriolis force. As a matter of
fact, a Coriolis force is directed perpendicularly to the Earth’s axis
and perpendicularly to the direction of the pendulum’s motion;
in the other words, the force is perpendicular to the plane of the
plane of the pendulum’s oscillation and will continually turn this
plane. The Earth completes one quarter of a rotation during one
and a half periods of the pendulum’s oscillation. The Foucault
pendulum turns much more slowly. At a pole, the pendulum’s
plane of oscillation will turn through 1

4 of a degree during one
minute. At the North Pole the plane will be turned to the right of
the pendulum’s path, and at the South, to the left.

The Coriolis effect will be somewhat less at Central European
latitudes than at the equator. A bullet in the example we have
just given will be deflected not by 3.5 cm, but by 2.5 cm. The
Foucault pendulum will be turned by about 1/6 of a degree during
one minute.

Must a gunner take the Coriolis force into account? Big Bertha,
used by the Germans to shell Paris during World War I, was
situated 110 km from the target. The Coriolis deflection is as much
as 1600 m in such a case. This is no longer a small quantity.

If a flying projectile is sent very far without taking the Coriolis
force into account, it will be deflected significantly from its course.
This effect is large, not because this force is large (for a ten-ton
projectile having a speed of 1000 km/hr, the Coriolis force will be
about 25 kgf), but because it is exerted continually for a long period
of time.

Of course, the wind’s influence on a rocket projectile may be
no less significant. Flight corrections made by a pilot depend on
the action of the wind, the Coriolis effect and imperfections in the
airplane or flying bomb.

III.

Pressure fluctuations caused by the weather are very irregular
in character. At one time people thought that pressure alone
determines the weather. Therefore, the following inscriptions have
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been placed on barometers up to the present day: clear, dry, rain,
storm. One even finds the inscription “earth-quake”.

Changes in pressure really do play a big role in changing the
weather. But this role is not decisive. Average or normal pressure
at sea level is equal to 1013 millibars. Pressure fluctuations are
comparatively small. The pressure rarely falls below 935-940
millibars or rises to 1055-1060.

The lowest pressure was registered on August 18, 1927, in the
South China Sea - 885 millibars. The highest - about 1080 millibars
- was registered on January 23, 1900, at the Barnaul station in
Siberia (all figures are taken with respect to sea level).

Maps are used by meteorologists to analyze changes in the
weather. The lines drawn on the maps are called isobars. The
pressure is the same along each such line (its value is indicated).
The regions of the lowest and highest pressures are the pressure
“peaks” and “pockets”.

The directions and strengths of winds are related to the
distribution of atmospheric pressure. Pressures are not identical
at different places on the Earth’s surface, and a higher pressure
“squeezes” air into places with a lower pressure. It would seem
that a wind should blow in a direction perpendicular to the isobars,
i.e. where the pressure is falling most rapidly. However, wind
maps show otherwise. Coriolis forces interfere in the matter of
air pressure and contribute their corrections, which are very
significant.

As we know, a Coriolis force, directed to the right of the motion,
acts on any body moving in the Northern Hemisphere. This also
pertains to air particles. Squeezed out of places of higher pressure
and into places where the pressure is lower, the particle should move
across the isobar, but the Coriolis force deflects it to the right, and
so the direction of the wind forms an angle of about 45o with the
direction of the isobar.

A strikingly large effect for such a small force! This is explained
by the fact that the obstacles to the action of the Coriolis force -
the friction between layers of air - are also very insignificant.

The influence of Coriolis forces on the direction of winds at
pressure “peaks” and “pockets” is even more interesting. Owing to
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the action of Coriolis forces, the air leaving a pressure “peak” does
not flow in all directions along radii, but moves along curved lines -
spirals. These spiral air streams twist in one and the same direction
and create a circular whirlwind, displacing air masses clockwise, in
a high-pressure area.

The same thing also happens in a low-pressure area. In the
absence of Coriolis forces, the air would flow towards this area
uniformly along all radii. However, along the way air masses are
deflected to the right. In this case, as is clear from the map, a
circular whirlwind is formed, moving the air counter-clockwise.

Winds in low-pressure areas are called cyclones; winds in high-
pressure areas are called anticyclones.

You shouldn’t think that every cyclone implies a hurricane or
a storm. The passing of cyclones or anticyclones through the city
where we live is an ordinary phenomenon, related, it is true, more
often than not to a change in weather. In many cases, the approach
of a cyclone means the coming of bad weather, while the approach
of an anticyclone, the coming of good weather.

IV.

Leonard Euler was born in Basel and in 1720 entered the
University of Basel. The young student’s mathematical talents
were soon noticed and John Bernoulli, in addition to his usual
lectures, gave him private lessons weekly. At 16, Euler obtained his
master’s degree.

The Russian Academy of Sciences was opened in 1725 at St.
Petersburg. In the summer of 1727 Euler moved to St. Petersburg
and free from any other duties, he was able to put all his energy
into mathematical research. He became a member of the Academy
and in 1733 took the place as the head of the department of
mathematics. During the time he was at the Russian Academy
Euler wrote his famous book on mechanics and in it, instead
of implying the geometrical methods used by Newton and his
pupils, Euler introduced analytical methods. He showed how the
differential equations of motion of a particle can be derived and how
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the motion of the body can be found integrating these differential
equations. This method simplified the solution of problems, and
the book had a great influence on subsequent developments in
mechanics.

About that time Euler became interested in elastic curves
and the latter drew Euler’s attention to the problem of the
lateral vibration of elastic bars and to the investigation of the
corresponding differential equation.

Exercises

1. Translate the italicized parts of the text. Pay attention to the
grammatical constructions.

2. Give the Russian equivalents of the following expressions:
an interesting phenomenon; to be deflected to; i.e.; let us

compute; the Coriolis force; an exact computation; under the
action; a rigorous proof; let us recall; as a matter of fact;
pendulum’s motion; in other words; pendulum’s oscillation; to
turn about; to take into account; a rocket projectile; to depend on;
up to the present day; to squeeze out; an obstacle to an action; to
owe to; in this case; in addition to; lateral vibration.

3. Translate the following passage into English:
Сила Кориолиса – это сила, действующая на частицы или

предметы, вызванная вращением Земли. В результате воздей-
ствия этой силы движущиеся объекты, океанские и атмосфер-
ные течения отклоняются в правую сторону в северном полу-
шарии и в левую сторону - в южном. Это явление сильно влияет
на погодные условия в масштабах всего мира. Примером дей-
ствия этого эффекта является воронкообразное движение воды,
выливающейся сквозь отверстие, или воздушного вихря. Назва-
ние дано по имени французского математика Гаспара Гюстава
де Кориолиса (Gaspard-Gustave de Coriolis, 1792 -1843).
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4. Translate the sentences from Russian into English using the
word combinations from the text:

1. Сила инерции Кориолиса часто являлась скрытой причи-
ной многих необычных явлений, наблюдаемых человеком.

2. Одним из проявлений воздействия силы Кориолиса на на-
ходящееся в свободном падении тело является отклонение его
траектории от строго вертикальной.

3. Эффект отклонения падающего тела от вертикали в мак-
симальной степени проявляется на экваторе.

4. Для наблюдателя, находящегося на Северном полюсе,
Земля, вращается против часовой стрелки, а на Южном полюсе
– по часовой.

5. Если на экваторе бросить тело вниз с высоты 80 метров,
оно отклонится от вертикали примерно на 3 см из-за действия
силы Кориолиса.

6. Под воздействием силы Кориолиса происходит изменение
траектории движения тела, движущегося горизонтально.

7. Если тело движется горизонтально на Северном полюсе,
то из-за силы Кориолиса оно отклонится от горизонтали впра-
во, а на Южном – влево.

8. Профессиональный стрелок из оружия должен знать, что
выпущенный им снаряд отклонится от горизонтали примерно
на 3,5 см, пройдя расстояние 500 метров.

9. Одной из причин отклонения маятника Фуко от верти-
кальной плоскости его колебаний является сила инерции Ко-
риолиса, направленная перпендикулярно к направлению зем-
ной оси.

10. Родившийся в Германии выпускник университета Базеля
Леонард Эйлер был приглашен в Российскую академию наук в
начале восемнадцатого века.

11. В 1733 году действительный член Российской академии
наук Леонард Эйлер возглавил ее отделение математики.

12. Свою самую известную книгу по механике, в которой
были развиты идеи Исаака Ньютона, Леонард Эйлер написал
во время своей работы в Российской академии наук.

13. Леонард Эйлер первым описал движение тел с помощью
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дифференциальных уравнений и дал методы их решения, поз-
воляющие определить траекторию движения этих тел.

14. Сила Кориолиса влияет также на распределение давле-
ния воздушных масс на территории Земли, что учитывается ме-
теорологами, определяющими давление в разных точках земной
поверхности.

15. За все время проводимых наблюдений была отмечена
максимальная величина давления воздуха на земной поверхно-
сти, равная 1080 миллибар, а минимальная – 885 миллибар.

5. Read the text again and write a summary (approximately 250
words). Remember to use linking devices to make your summary
coherent.

6. Read the quotations below and answer the questions.
Alfonso X (1221-84), Spanish king and astronomer.
If the Lord Almighty had consulted me before embarking upon

his creation, I should have recommended something simpler.
Albert Einstein (1879-1955), German-born American

physicist, and Leopold Infeld (1898-1968), Polish physicist.
Most of the fundamental ideas of science are essentially simple,

and may, as a rule, be expressed in a language comprehensible to
everyone.

1. Why do you think the ideas about the world are so different?
2. Could it be caused by the ages the scientists lived in?
3. Give some examples justifying both statements.
Carl Wilhelm Wolfgang Ostwald (1883-1943), Latvian

chemist.
H = W −R
Happiness is equal to work minus resistance.
4. Do you think there should be more parameters in the formula?
5. Give your variant of a modified formula.
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VII. Numbers and
Measures in the
Earliest Written
Records

Joran Friberg, Scientific American, Vol. 250, 1986, pp. 110-118.

As early as the end of the fourth millennium B.C. proto-
Sumerian and proto-Elamite scribes had well-developed systems
of numbers and measures. They included precursors of our own
decimal system.

Among the world’s earliest written records are inscriptions on
clay tablets unearthed in Iraq and Iran, in particular at the sites
of two great ancient cities: the early Sumerian city Uruk and the
early Elamite city Susa. The inscriptions, mainly accounts and
receipts of various kinds, were written toward the end of the fourth
millennium B.C. and soon afterward. After more than 100 years
of scholarly effort all the systems of numbers and measures in
these “proto-literate” texts have now been identified. They turn out
to include precursors of the later Sumero-Babylonian sexagesimal
number system (counting in 10’s and 60’s) and of our own decimal
system (counting only in 10’s). In addition they include a previously
unrecognized system of capacity measures, used in all accounts
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dealing with barley, which in this early period was both the basic
food grain and the currency.

The reader who would enjoy knowing about the proto-literate
systems of numbers and measures will have to join me in a two-
directional journey. We shall travel backward in time with respect
to the historical record and forward from the past to the present
with respect to the scholars who have studied the ancient tablets.
The reason we must do so is that the oldest tablets were buried
the deepest and were therefore the last to be excavated and made
available for study. The oldest tablets were also the most difficult
to interpret.

Let us take as our point of departure the Greek coastal island of
Cos, some 20 miles northwest of Rhodes. There in about 340 B.C.
the founder of a school of astrology, a Babylonian named Berossos,
wrote a history of his homeland. In it he told his Greek readers that
the numbers sossos (60), neros (600) and saros (3.600) occupied a
special place in Babylonian arithmetic and astronomy. Practically
nothing more was known about Babylonian numbers and measures
for the next 2.200 years. Then in 1855 Sir Henry Rawlinson, one
of the pioneers in the decipherment of cuneiform script, published
a summary of the cuneiform numbers inscribed on a small clay
tablet found at the site of the ancient Messopotamian city Larsa.
Rawlinson realized, among other things, that the last two lines of
the tablet stated in effect that “58 1 is the square of 59” and “1 is
the square of 1”. He concluded that the tablet was the final part
of an incomplete table of square roots, beginning with the square
of 49 (equal to 2.401, or 40x60+1) and ending with the square of
60 (equal to 3.600, or 60x60). His interpretation, of course, was
possible only if it was assumed that the numbers 60 and 60x60
were both represented by the same symbol, namely the symbol for
the number 1.

Rawlinson drew the conclusion that the Babylonians had worked
with a sexagesimal number notation of a quasipositional nature, in
other words, a number notation in which the symbol for 1 also stood
for the powers of 60 and for 10 times the powers of 60. He further
concluded that the Babylonians did not have any special sign to
represent zero.
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Here it is necessary to briefly consider the relative merits of
number systems with different bases. Let us begin with the so-called
metric system, which is actually a family of interrelated systems of
units for several kinds of measures. The metric system owes its
current acceptance to its structural simplicity and to the fact that it
is constructed to match the base-10, or decimal, system used today
for all kinds of routine computations. Since its conception in France
in the aftermath of the French Revolution it has gradually spread
across the world.

The very length of time it has taken the metric system to gain
general acceptance is proof of how difficult it is to suppress other
“customary” systems of weights and measures. English examples of
such systems include the sequences “mile”, “furlong”, “chain”, “rod”,
“yard” , “foot”, and “inch” for measures of length, “barrel”, “bushel”,
“peck”, “quart” and “pint” for measures of dry capacity and “ton”,
“hundred-weight”, “pound” and “ounce” for measures of weight.
For that matter even the metric system has come to incorporate
nondecimal systems: the 12-month year, the 24-hour day, the
60-minute hour and the 60-second minute as units of time, and the
360-degree circle, with its subdivisions the 60-minute degree and
the 60-second minute as units of angle. These customary measures
can be traced back to classical Greek astronomy and beyond that
to the general use of sexagesimal numbers for computation in
Babylon and Sumer. Many other customary systems of weights
and measures, however, were doomed to be replaced by the metric
system because they were insufficiently matched to the widely
adopted decimal number system.

Still, the survival of some customary systems has been partially
the fault of the decimal number system itself. The decimal system
has the weakness that its base of 10 is really too small. This
will become more apparent when I give additional examples of
computations within the framework of the sexagesimal system with
its larger base: 60 = 3x4x5 (as opposed to 10 = 2x5). As will be
seen, the base-60 system made it possible for the Sumerians’ proto-
literate predecessors to construct a family of nicely interrelated
measure systems, with sequences of naturally occurring standard
units that were easy to deal with in computations.
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To find the correct interpretation of the system of cuneiform
notations serving to represent sexagesimal (or base-60) numbers
was relatively easy. It proved to be much harder to understand
how the various systems of measures that appear clearly in many
cuneiform inscriptions were constructed. Some decisive clues were
offered by certain tablets known to scholars as school texts.

The copying of standard texts was an essential part of the school
curriculum in Old Babylonian times (1900 to 1500 B.C.). Many
of the texts were lists and tables: lists of geographic names, lists
of the names of birds and fishes, lists of words in two languages,
grammatical tables for the study of the difficult Summerian
language and so on. Also copied were mathematical tables and lists
explaining the structure of the Babylonian systems of measures
and their representation in cuneiform script. By doing this kind of
copying a student trained himself in cuneiform writing and at the
same time accumulated a small personal library of tablets.

The first example of a table of measures to be described in a
scholarly publication was a fragmentary tablet also uncovered at
Larsa. The table was discussed by George Smith, a prominent
student of cuneiform, in 1872, but its meaning was not fully
understood until much later. On the left side of each column
of the tablet is a systematically arranged sequence of linear
measurements, expressed in standard units. The units are, from
the smallest to the largest, the she (a grain), the shu-si (a finger),
the kush (a cubit) and so on up to the beru, equal to 30x60x12
(6x602), or 21.600, cubits. On the right side of each column are
the same linear measurements expressed as multiples of cubits
in sexagesimal notation. For example, the line at the lower right
labeled b in the reproduction of the tablet on page 81 reads
“Two beru (equals) 12”. It should be noted that beru is how
the Babylonians pronounced the symbol for the Sumerian word
danna (normally written as kas-gid, meaning “long way”). The 12,
however, represents not 12 cubits but the much larger sum of 12
x 602 cubits. With a cubit being equal to about half a meter in
length, the length of beru was more than 20 kilometers.

When another fragment of the same tablet was identified soon
after the first fragment was found, it proved to contain an additional
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metrological table of the same kind as the first, except that here
the right side of each column was concerned with multiples of a
nindan (equal to 12 cubits) in sexagesimal notation. Only much
later did the study of Babylonian mathematical texts dealing with
the computation of volumes make it clear that whereas the cubit was
the basic unit for vertical measurements, the nindan was the unit for
horizontal measurements. Hence the smallest Sumero-Babylonian
unit of area, the shar, was one square nindan. By the same token the
smallest unit of volume, also called a shar, was the space enclosed
by a bottom area of one square nindan that had sides one cubit
high. This seemingly peculiar choice of units was actually quite
practical because it usually excluded the need to count with small
fractions of a volume unit.

These two metrological tables are eloquent witness to how well
adapted the Sumero-Babylonian system of linear measurements was
to the sexagesimal number system. Consider the conversion rules
for units of the system of linear measures. Six she is equal to one
shusi, 30 shu-si is equal to one kush, 12 kush is equal to one nindan,
60 nindan is equal to one USH and 30 USH is equal to one kas-gid
(or beru). The information contained in this sequence of conversion
rules can be condensed as follows: the “conversion factors” for the
Babylonian linear system are 6, 30, 12, 60 and 30. Note that each
one of these factors is also a numerical factor of the sexagesimal
number system. By way of comparison, the Anglo-Saxon sequence
from the inch to the mile involves the following conversion factors:
12, 3, 5 1

2 , 4, 10 and 8. Whatever the origins of the factors for
this customary system, they are clearly in no way adopted to our
decimal number system.

Exercises

1. In the text, translate the sentences italicized.

2. Explain the meanings of these words in which they occur in
the text:

record, scholar, power, matter, hard, respect, witness, conversion.
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3. Find words in the text with the same or similar meanings:
1) difficult to do or understand
2) approximately

4. Insert prepositions:
to be equal ... about half a meter ... length, to be concerned ...

smth, ... the same token, ... way of comparison, lists of words ... two
languages, ... the same time, from the smallest ... the largest, ... the
right side of each column, ... page 81, to deal ... smth, spread ... the
world, to trace back ... smth, ... addition, with respect ... smth, ...
other words, ... particular, ... effect.

5. Give the English equivalents of the following:
1) хорошо развитая система исчисления
2) десятичная система
3) в частности
4) счет на десятки
5) читателю было бы интересно узнать, что
6) вы вынуждены присоединиться ко мне
7) путешествие во времени
8) из прошлого в настоящее
9) самые сложные для понимания
10) в качестве отправной точки давайте возьмем
11) были представлены одним и тем же символом, а именно
12) особый символ для обозначения нуля
13) сейчас используется благодаря своей простоте
14) различные стандартные вычисления
15) доказательство того, как трудно конкурировать с други-

ми системами
16) по этой причине
17) относительно легко
18) неотъемлемая составляющая школьной программы
19) изучение древних математических текстов прояснило
20) кроме того
21) этот кажущийся странным выбор
22) можно представить вкратце следующим образом
23) с которыми легко иметь дело при вычислениях

51



6. Make up your own sentences on the basis of the following.
1) They turn out to include ...
2) We shall travel backward in time ...
3) The reason we must do so is ...
4) In it he told his readers that ...
5) Practically nothing more was known about ...
6) He realized, among other things, that ...
7) He drew the conclusion that ...
8) Here it is necessary to briefly consider ...
9) Let us begin with ...
10) I give additional examples of ...
11) To find the correct interpretation ... was relatively easy.
12) It should be noted that ...

7. Write a paragraph of about 150 words describing the merits
of number systems with different bases.

8. Read the quotations below and answer the questions.
Thomas Alva Edison (1847-1931), American inventor.
Genius is two percent inspiration, ninety-eight percent

perspiration.
Henry Eyring (1901-81), American physical chemist.
A scientist’s accomplishments are equal to the integral of his

ability integrated over the hours of his effort.
1. Is it always so?
2. Could you name any outstanding person whose life seems to

contradict Edison’s words?
3. Did Edison and Eyring speak about the same?
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VIII. A Mathematic
Treasure in
California

S.I.B.Gray, The Mathematical Intelligencer, Vol. 20, No. 2
(Spring 1998), pp. 41-46.

Does your hometown have any mathematical tourist attractions
such as statues, plaques, graves, the cafe where the famous
conjecture was made, the desk where the famous initials are
scratched, birthplaces, houses, or memorials? Have you encountered
a mathematical sight on your travels? If so, we invite you to
submit to this column a picture, a description of its mathematical
significance, and either a map or directions so that others may
follow in your tracks.

Where should tourists go to see outstanding collections of
historic mathematic books? Most of us would try Europe first,
perhaps the Bibliotheque nationale de France in Paris, founded
in 1367, before Gutenberg’s time. At least since Mersenne, many
outstanding mathematicians have enjoyed scholarly exchange in
France. Thus, we might expect to find extensive collections of
manuscripts and letters in Paris.

We could also travel across the Alps to Italy where we would
find another candidate for the world’s finest mathematics library
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in the Vatican. Founded in 1447, for handwritten manuscripts,
the Biblioteca Apostolica Vaticana is especially strong in pre-
Gutenberg materials. Although the Vatican has its antecedents in
the Middle Ages and the Roman Empire, we note that the most
famous center of learning in antiquity, the library in Alexandria,
was completely destroyed by fire. Thus, the Vatican Library, which
might be expected to have had access to extremely rare ancient
materials, found few surviving manuscripts.

We might also expect to find great collections in Florence, the
home of the Renaissance with its rebirth of scholarship founded
on antiquity. Modern tourists can view the Biblioteca Medicea
Laurenziana, founded in 1444 by Cosimo de’Medici. He chose
Michelangelo as the architect to house the great family collection.
But its collections were limited by the size of the room. When a
room was filled, a new collection was started and moved elsewhere.
Also, the Laurentian Library was organized while Florence was a
seat of power and wealth, but long before the great mathematics
of the 17th century.

What about the Teutonic world? The rise of Wissenschaften
in the 19th century was coupled with the acquisition of major
mathematics collections. But these collections were dispersed.
With Gottingen, Munich, Berlin, and the more modern Max
Planck Institutes, for example, all sharing a strong interest in a
limited number of manuscripts, no single library is dominant today.
Also, pillaging after warfare, dating at least to the 17th century, has
diminished the chances of finding any one outstanding collection
intact in Germany. Another factor is that 19th-century historians
and librarians in Germany valued anitquity. A. Mommsen would
write about the use of Roman coins, but probably never realized
that his contemporaries - G. Cantor, Kronecker, and Hilbert -
would have a major impact on future mathematical thought. When
D.E. Smith arrived in Germany in the 1880s to study the history of
calculus, his mentor, M. Cantor, said, “Well, Mr. Smith, if I were
you, I should not go back much father than Antipho and Bryso,” -
both of the fifth century B.C.. M. Cantor, as a historian, was not
focused on the contributions of Barrow, Newton, and Leibnitz.
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The English-speaking world is similar to the German world in
its complexity. May excellent collections exist in Cambridge, at
the Bodleian Library at Oxford, and at the British Museum, the
Royal Society, and the Royal Institution in London. In Britain,
one’s choice of the premier library would depend on what century,
what language, what translation, and whether one seeks books or
manuscripts.

The Bodleian, founded in 1602, is the oldest library in
England and thus has a special position. Posterity in general
and mathematicians in particular owe a special debt of gratitude
to the Bodleian and the Vatican libraries. They house copies of the
two oldest editions of Euclid’s Elements (888 and ca. 900 A.D.,
respectively). Most mathematicians would agree that if one had to
select a single title as the most important contribution from our
discipline to civilization, the Elements would be named first. Euclid
is simply “the most successful textbook writer the world has ever
known”.

Are there any great collections in North America? In fact,
there are quite a few. The Widener at Harvard, the Beinecke at
Yale, the Regenstein at Chicago, and the Bancroft at Berkley all
have wonderful collections. Columbia University has the awesome
Plimpton Collection of clay tablets dating to the Old Babylonian
period (ca. 1900 to 1600 B.C.). The Library of Congress has the
Lessing J. Rosenwald Collection of 2,653 rare mathematics books.
The Artemas Martin Collection at American University is rich in
19th-century textbooks. Many others deserve a visit. But a superb
collection - arguably one of the finest in the world - is found in
Southern California, of all places, near Los Angeles.

I. The Collector

The collection was built with wealth - the wealth of Henry E.
Huntington, the nephew of a 19th-century railroad “robber baron.”
As the heir of one of Oscar Lewis’s Big Four (Leland Stanford, Mark
Hopkins, Charley Crocker, and Collis P. Huntington), Henry shared
in the fortune derived from building and joining the Central Pacific
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and Union Pacific railroads in Promonotory, Utah Territory, 1869.
Not one, but several spikes of gold, silver, and alloys were driven,
representing the enormous wealth of joining the West Coast to the
cities of the eastern United States. Symbolically, the wealth of the
AmericanWest combined with the more refined tastes of the eastern
elite.

When his uncle died, Henry was his favorite aide and confidant.
He was managing the railroad-owned streetcar system that is so
popular today with San Francisco tourists. Henry relocated to Los
Angeles, and carried with him his knowledge of developing valley
and foothill lands by controlling the rate and direction of public
transportation. The business experience acquired in developing
access to San Francisco’s many hills worked with equal success in
the vast Los Angeles basin.

Like his uncle, Henry continued to make money - and to hold on
to it. He even outdid his uncle by consolidating the family fortune.
Henry married his Uncle Collis’s widow, a woman slightly his junior.
Both of them admired Britain and the British passion for paintings,
silver, porcelain, and furniture.

Henry was especially fond of rare and elegant book collections.
From the time (1910) he moved into his newly built mansion in
the Los Angeles suburb of San Marino until his death (1927), he
bought en bloc every important library that came on the market in
Britain. The power of his dollar so dominated the bibliographical
markets of the world that American, British, and Continental estate
owners simply emptied their shelves of hereditary collections. In
this brief interval of time he acquired a Gutenberg Bible on
vellum, the Ellesmere manuscript of Chaucer’s Canterbury Tales,
an unsurpassed number of original early Shakespearean editions,
and an Audobon double-elephant folio of The Birds of America.
He also inadvertently acquired mathematics titles. The British
and Continental landed gentry had been purchasing mathematics
publications since the 17th century. The libraries consolidated by
Henry Huntington reflected the educated tastes of connoisseurs
who were aware of the achievements of their contemporaries.

Later, Henry’s collection was augmented by the efforts of
astronomers who worked at Caltech’s observatories. Both George
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Ellery Hale and Edwin Hubble were devoted book collectors.
Both were friends and colleagues of E.T. Bell. The Huntington’s
mathematics collection was Bell’s primary source of scholarly
references.

In addition, Bell used the Huntington as his benchmark in
guiding other collectors. For example, Bell strongly advised the
eminently successful Kentucky actuarial lawyer, William Marshall
Bullitt, to try to acquire a copy of Niels Abel’s Memoire, the
now-famous eight page pamphlet published at Abel’s own expense
in 1824. Bullitt managed to purchase a copy from the widow of an
actuarial professor in Oslo. The only other known surviving copies
are in Gottingen and in the Mitta-Leffler Library in Stockholm.

II. Student Appreciation and Four Titles

What might a late-20th-century student of mathematics,
knowing no Latin, be able to appreciate upon viewing the
collection at the Huntington? The illustrations and many of the
calculations show clearly that mathematics is a universal language
that overcomes the limitations of words. The illustrations and
diagrams, drawn by hand, are superb examples of craftsmanship.
In most cases, the implications and detail are left to the reader, a
procedure prevalent today as well.

Recently, my students, on viewing the Huntington collection
in chronological order, remarked that Euler’s Introductio was the
first to look like a math book. By the 18th century, the equation
and notation had evolved, as well as the printing techniques, to
have math equations, not verbal explanations, embedded in the
text. Calculus students will immediately recognize that Euler was
working on infinite series.

Let’s now examine four titles from the Huntington Collection
to illustrate the value of showing our students works that in many
instances predate Columbus’s discovery of North America. The first
is Ptolemy’s Almagest, or “the greatest.”
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III. Almagest

Ptolemy wrote in Greek in the second century A.D. He
produced the definitive Greek work on determining the location of
the planets. His mathematics and its geocentric theory stood
unchallenged for 1400 years until Copernicus proposed his
heliocentric theory in 1543. Viewing his page upon page of chord
charts, representing essentially the first trigonometric tables, is
an incredible experience. The charts are a compilation of small,
meticulously hand-written numbers. Each number records a value
painstakingly determined.

This surviving copy uses the sexagesimal number system with
Arabic [not Hindu-Arabic] numerals, the precursor of our modern
counterparts of degrees, minutes, and seconds. It is thought to have
been produced in the south of France, but the monastery, or atelier,
is unknown. This translation is taken from Gerard of Cremona’s
work using an Arabic edition that entered Europe via the Moors in
Spain.

The charts raise many questions. Mathematicians wonder
what techniques were used to extract square roots. How were the
calculations made? What theorems were applied? Did Ptolemy
really have the modern sum and difference formulas for chords?

Claudius Ptolemy was a Roman citizen from a Greek family
who is thought to have spent his entire adult life in Alexandria,
Egypt; thus, Ptolemy most likely had a knowledge of Latin, Greek,
and Aramaic. For careful study of his work, the sexagesimal,
Greek, Roman, and modern number systems must be understood.
Calculations for a circle are based not on 3600, but units which
divide a circle into 120 parts. Values in modern trigonometric
tables are ratios. Ptolemy, in the prevailing mode of his era, gave
lengths of chords in a circle of radius 60, the base of his sexagesimal
number system.

The Huntington’s copy of the Almagest is illuminated with
gold and color adornment. The vellum is not thick but has an
unforgettable texture of strength tempered with the appeal of the
finest translucent paper.
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IV. Elements

The Huntington has more than 30 editions of the Elements,
mostly in Latin, Greek, and English. But not all books have
survived in all editions. Erhard Ratdolt’s translation in Venice in
1482 was the first to be printed. Greek and Latin versions started
appearing in many European countries. From the 17th to the
19th century, mathematicians in Britain often produced their own
versions. Marginalia, illustrations, and comments often become
incorporated with the text in subsequent editions. Todhunter’s
edition is an example which is still often found in public libraries.

For those familiar with a modern presentation of Euclid’s
axiomatic system, the 1482 edition contains some surprises. The
manuscript opens immediately with 23 definitions, with the first
three being those of the point, line, and plane! “A point is that
which has no parts.” “A line is without breadth.” (What is a
part? What is breadth?) Since David Hilbert’s Grundlagen der
Geometrie (1899), modern mathematicians have accepted these
terms without definition in constructing an axiomatic system.
Euclid never thought to do so.

Many - most - of the illustrations are immediately recognizable
to any student of geometry, e.g., “diameter, circulus, major, minor,
semicirculus, eqlaterus, perpendcularia [sic.]” Impressively, the
Latin and illustrations of “punctus, linea, plana,” are clear to
English readers 500 years later.

On the second page, Euclid immediately sets forth ten principles
of reasoning, his five mathematical postulates, and five “common
notions”. In the lower left-hand margin is the illustration for the
famous fifth, or parallel postulate. For a mathematician, the sight
evokes the later drama of Saccheri, Gauss, Lobachevsky, Bolyai,
and Riemann. In later pages, two illustrations clearly communicate
Euclid’s “windmill” or “bride’s chair” proof of the Pythagorean
Theorem; also to be found is his “elefuga” or “pons asinorum” proof
of the equality of the base angles of an isosceles triangle.

Some scholars admire a particular book of the Elements. E.T.
Bell, for example, labeled Book V, or the rigorous introduction to
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the notion of continuity, a “masterpiece”. Others have expressed
“fear” as well as admiration for Book X, which includes his
geometric treatment of incommensurables, i.e. irrational numbers.

The Huntington has two copies of the first published English
translation of Euclid’s Elements (London, 1570). The copies,
which are slightly different, purport to be the work of Sir
Henry Billingsley, who later became Lord Mayor. Billingsley’s
Elements contains pop-up, three-dimensional models embedded
in the text. Among others, a reader may assemble a pyramid, a
tetrahedron, and perpendicular planes. Also, we find delightful
English expressions, e.g., “A cube number is that which is equally
equal equally or which is contained under three equal numbers”.

V. Analyse des Infiniment Petits

L’Hopital’s Analyse is the first differential calculus book to
appear in print. In the text appears his eponymous rule, which
is almost certainly the work of John Bernoulli. L’Hopital was an
exceptionally clear and concise writer. There is no elaboration. A
book that dominated mathematics as a principal text for most of
one century needed only a few well chosen words - not equations
- to make its points. This stands in sharp contrast to today’s
calculus texts.

It is noteworthy that the only re-issued second edition among
our selections is L’Hopital’s Analyse. The first edition was published
in 1696, with the reprinted version appearing 12 years after his
untimely death in 1704. All other books on our list are original first
editions.

VI. Sumario Compendioso

The first mathematical work printed in the New World predates
all North American settlement, i.e., Jamestown, Plymouth Colony,
and Quebec City. The Sumario Compendioso was written in
Spanish, not Latin, by Brother Juan Diez, “freyle”, and published
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by Juan Pablos Bressano, in Mexico City in 1556. We read, “El
qual fue impresso en ja muy grande y muy leal ciudad de Mexico.”
The Sumario was the first textbook of any kind, other than
religious instruction, published in the entire Western Hemisphere.
Twenty-four of the 206 pages (103 folios) are devoted exclusively
to arithmetic and algebra, while the rest cover the purchase price
of various grades of silver, the purchase price of gold, percents,
exchange rates, taxes, and other monetary affairs.

What type of algebra was being published in 1556? I quote from
the first problem.

Primera quistion [cuestion] “Da me un numbero quadrado que
restando del, 15, y 3/4 , quede fu propria rays [raiz].”

or, “Find a square number from which if 15 3
4 is subtracted, the

difference is its own square root.” The problem is followed by the
“regla,” or rule, and the proof, similar to the following:

Regla (Rule) Let the number be cosa. One half of cosa squared is
1
4 of the zenso (quadrado). Adding 15 and 3

4 to 1
4 makes 16, of which

the root is 4, and this plus 1
2 is the root of the required number.

Proof The “cosa” is 4 1
2 and the square of the cosa is the quadrado.

(9/2)2 = 20 1
4 20 1

4 − 15 3
4 = 4 1

2 This will bear comparison with
Brother Juan’s far better known French contemporary, Francois
Viete (1540-1603). Viete solved a quadratic x2 + ax = b by using
x = y − a/2 to eliminate the linear term, and then also taking a
square root. Neither had the advantage of modern notation.

Of the other two known copies of the Sumario, one is in
the British Museum and the other at the Biblioteca Nacional
in Madrid. Henry Huntington himself acquired the California
copy in 1920, presumably not influenced by any philosophy of
multiculturalism. David Eugene Smith of Columbia, a former
MAA president, published a translation which you may borrow
form UC Santa Barbara or UC Berkeley. [You may note Cajori
borrowed the Berkeley copy several times.]

Also in Henry Huntinglon’s day, and presumably heedless
of gender equity issues, the Library acquired two titles by the
Marquise du Chatelet. In fact, the Library has three copies of
her famous translation of Newton’s Principia. It also has Maria
Agnesi’s Instituzioni Analitiche, with her famous illustration of the
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versed sine curve, the “Witch of Agnesi”.

VII. Visiting the Huntington

These editions are priceless and fragile. The Huntington
Library seldom displays more than one or two mathematics and
science books in one exhibit. Degradation associated with light and
humidity is a particular concern. Security is another. At the present
time should you, as a member of the general public, become one
of the half million tourists who visit the Huntington Library each
year, you would find only two works on display: Hubble’s copy of
Copernicus’s De Revolutionibus Orbium Coelestium and Galileo’s
first illustrations of moon craters from Sidereus nuncius: Venice,
1610. To search more freely, you will need to make an appointment
with the Library staff.
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Exercises

1. In the text, translate the sentences italicized.

2. What key words and phrases would you use to speak about
Euclid’s Elements?

3. Insert prepositions:
to be strong ... smth, to focus ...smth, to be similar ... smth,

to be fond ... smth, to be aware ... smth, to write ... Greek, to be
familiar ... smth, to be clear ... smb, to be devoted ... smth.

4. What do the abbreviations ca., A.D., B.C., e.g., i.e. stand
for? Give their English equivalents.
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5. Give the English equivalents of the following:
1) бесценные издания
2) не выдерживать сравнение с
3) извлекать квадратный корень
4) взять книгу из библиотеки
5) страницы, посвященные исключительно алгебре
6) намного более известный современник
7) требуемое число
8) это сильно отличается от современных текстов
9) другие книги из списка
10) несоизмеримые иррациональные числа
11) первый напечатанный перевод
12) последующие издания
13) сохранившаяся рукопись
14) для тех, кто знаком с
15) на полях слева
16) работа по определению местонахождения
17) теория оставалась незыблемой
18) выдвинуть теорию
19) поставить много вопросов
20) выполнить вычисления
21) применить теорию
22) разделить круг на 120 частей
23) вычисления ясно показывают, что
24) зная о достижениях современников
25) редкие книги по математике

6. Answer the following questions:
a) What libraries are known to house extensive collections of

historic mathematics books?
b) What was the most famous center of learning in antiquity?
c) What is Aramaic?
d) What was the connection of E.T. Bell with the Huntington?
e) Which books did E.T. Bell refer to as masterpieces?
f) What is the “Witch of Agnesi”?
g) It is known that the Huntington Library does not display a

lot of mathematical books in one exhibit. Why?
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7. Describe four famous books from the Huntington collection
examined in the article. Write a short summary.

8. Read the quotations below and answer the questions.
Wystan Hugh Auden (1907-73), British-born American poet.
How happy the lot of the mathematician! He is judged solely by

his peers, and the standard is so high that no colleague or rival can
ever win a reputation he does not deserve.

Erick Christopher Zeeman (1925- ), British mathematician.
The scientist has to take 95 per cent of his subject on trust. He

has to because he can’t possibly do all the experiments, therefore
he has to take on trust the experiments all his colleagues and
predecessors have done. Whereas a mathematician doesn’t have
to take anything on trust. Any theorem that’s proved, he doesn’t
believe it, really, until he goes through the proof himself, and
therefore he knows his whole subject from scratch. He’s absolutely
100 per cent certain of it. And that gives him an extraordinary
conviction of certainty, and an arrogance that scientists don’t have.

1. Isn’t mathematics a science? Consult an English-English
dictionary.

2. What sciences does the author mean?
Nicholas Copernicus (1473-1543), Polish astronomer.
Mathematics is written for mathematicians.
Novalis (1772-1801), German Romantic poet.
Mathematics is the Life of the Gods.
3. Do you agree with Copernicus? Do you think there is any

arrogance in his words?
4. Do you agree that Novalis expressed basically the same?
5. Do you consider mathematics to be superior to the sciences

and humanities?
6. Do you think that mathematics is self-sufficient? If yes, is it

always a good thing?
7. Which area of knowledge could contribute to mathematics?
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IX. What Is the Difference
between a Parabola
and a Hyperbola?

Shreeram S. Abhyankar, The Mathematical Intelligencer,
Volume 19, No. 4 (Fall 1988), pp. 36-43.

I. Parabola and Hyperbola

The parabola is given by the equation

Y 2 = X;

we can parametrize it by

X = t2 and Y = t.

The hyperbola is given by the equation

XY = 1;

we can parametrize it by

X = t and Y =
1

t
.
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Thus the parabola is a polynomial curve in the sense that we can
paramatrize it by polynomial functions of the parameter t. On
the other hand, for the hyperbola we need rational functions of
t that are not polynomials; it can be shown that no polynomial
parametrization is possible. Thus the hyperbola is not a polynomial
curve, but it is a rational curve. To find the reason behind this
difference, let us note that the highest degree term in the equation
of the parabola is Y 2, which has the only factor Y (repeated twice),
whereas the highest degree term in the equation of the hyperbola is
XY which has the two factors X and Y.

II. Circle and Ellipse

We can also note that the circle is given by the equation

X2 + Y 2 = 1;

we can parametrize it by

X = cos θ and Y = sin θ.

By substituting tan θ
2 = t we get the rational parametrization

X =
1− t2

1 + t2
and Y =

2t

1 + t2
,

which is not a polynomial parametrization. Similarly, the ellipse is
given by the equation

X2

a2
+
Y 2

b2
= 1

and for it we can also obtain a rational parametrization that is not
a polynomial parametrization. I did not start with the circle (or
ellipse) because then the highest degree termsX2+Y 2 (respectively,
(X2/a2) + (Y 2/b2)) do not have two factors, but we need complex
numbers to find them.
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III. Conics

In the above paragraph we have given the equations of parabola,
hyperbola, circle, and ellipse in their standard form. Given the
general equation of conic

aX2 + 2hXY + bY 2 + 2fX + 2gY + c = 0,

by a linear change of coordinates, we can bring it to one of the above
four standard forms, and then we can tell whether the conic is a
parabola, hyperbola, ellipse, or circle. Now, the nature of the factors
of the highest degree terms remains unchanged when we make such
a change of coordinates. Therefore we can tell what kind of a conic
we have, simply by factoring the highest degree terms. Namely, if
the highest degree terms aX2 + 2hXY + bY 2 have only one real
factor, then the conic is a parabola; if they have two real factors,
then it is a hyperbola; if they have two complex factors, then it is
an ellipse; and, finally, if these two complex factors are the special
factors X ± iY , then it is a circle. Here we are assuming that the
conic in question does not degenerate into one or two lines.

IV. Projective Plane

The geometric significance of the highest degree terms is that
they dominate when X and Y are large. In other words, they give
the behavior at infinity. To make this more vivid, we shall introduce
certain fictious points, which are called the “points at infinity” on
the given curve and which correspond to factors of the highest
degree terms in the equation of the curve. These fictious points may
be considered as “points” in the “projective plane.” The concept of
the projective plane may be described in the following two ways. A
point in the affine (X, Y)-plane, i.e., in the ordinary (X, Y)-plane,
is given by a pair (α, β) where α is the X-coordinate and β is the
Y-coordinate. The idea of points at infinity can be made clear by
introducing homogeneous coordinates. In this set-up, the old point
(α, β) is represented by all triples (kα, kβ, k) with k 6= 0, and we call
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any such triple (kα, kβ, k) homogeneous (X,Y, Z)-coordinates of
the point (α, β). This creates room for “points” whose homogeneous
Z-coordinate is zero; we call these the points at infinity, and we call
their totality the line at infinity. This amounts to enlarging the
affine (X,Y )-plane to the projective (X,Y,Z)-plane by adjoining
the line at infinity.

More directly, the projective (X,Y, Z)-plane is obtained by
considering all triples (α, β, γ) and identifying proportional triples;
in other words, (α, β, γ) and (α′, β′, γ′) represent the same point if
and only if (α′, β′, γ′) = (α, β, γ) for some k 6= 0; here we exclude
the zero triple (0,0,0) from consideration. The line at infinity is
now given by Z=0. To a point (α, β, γ) with γ 6= 0, i.e., to a point
not on the line at infinity, there corresponds the point (αγ ,

β
γ ) in

the affine plane. In this correspondence, as γ tends to zero, α
γ or

β
γ tends to infinity; this explains why points whose homogeneous
Z-coordinate is zero are called points at infinity.

To find the points at infinity on the given conic, we replace
(X,Y ) by (X/Z, Y/Z) and multiply throughout by Z2 to get the
homogeneous equation

aX2 + 2hXY + bY 2 + 2fXZ + 2gY Z + cZ2 = 0

of the projective conic. On the one hand, the points of the original
affine conic correspond to those points of the projective conic for
which Z 6= 0. On the other hand, we put Z = 0 in the homogeneous
equation and for the remaining expression we write

aX2 + 2hXY + bY 2 = (pX − qY )(p∗X − q∗Y )

to get (q, p, 0) and (q∗, p∗, 0) as the points at infinity of the conic
that correspond to the factors (pX − qY ) and (p∗X − q∗Y ) of the
highest degree terms aX2 + 2hXY + bY 2.

In the language of points at infinity, we may rephrase the above
observation by saying that if the given conic has only one real point
at infinity, then it is a parabola; if it has two real points at infinity,
then it is a hyperbola; if it has two complex points at infinity, then
it is an ellipse; and, finally, if these two complex points are the
special points (1, i, 0) and (1,−i, 0), then it is a circle. At any rate,
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all the conics are rational curves, and among them the parabola is
the only polynomial curve.

V. Polynomial Curves

The above information about parametrization suggests the
following result.

THEOREM. A rational curve is a polynomial curve if and only
if it has only one place at infinity.

Here place is a refinement of the idea of a point. At a point there
can be more than one place. To have only one place at infinity means
to have only one point at infinity and to have only one place at that
point. So what are the places at a point? To explain this, and having
reviewed conics, let us briefly review cubics.

VI. Cubics

The nodal cubic is given by the equation

Y 2 −X2 −X3 = 0.

It has a double point at the origin because the degree of the lowest
degree terms in its equation is two. Moreover, this double point at
the origin is a node, because at the origin the curve has the two
tangent lines

Y = X and Y = −X

(we recall that the tangent lines at the origin are given by the
factors of the lowest degree terms). Likewise, the cuspidal cubic is
given by the equation

Y 2 −X3 = 0.

It has double point at the origin. Moreover, this double point at
the origin is a cusp, because at the origin the curve has the only
tangent line

Y = 0.
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A first approximation to places is provided by the tangent lines. So
the nodal cubic has two places at the origin, whereas the cuspidal
cubic has only one. More precisely, the nodal cubic has two places
at the origin because, although its equation cannot be factored as
a polynomial, it does have two factors as a power series in X and
Y; namely, by solving the equation we get

Y 2 −X2 −X3 = (Y −X(1 +X)
1
2 )(Y +X(1 +X)

1
2 ),

and by the binomial theorem we have

(1+X)
1
2 = 1+(1/2)X+. . .+

(1/2)[(1/2)− 1] . . . [(1/2)− j + 1)]

j!
Xj+. . . .

VII. Places at the Origin

Thus the number of places at the origin is defined to be equal to
the number of distinct factors as power series, and in general this
number is greater than or equal to the number of tangent lines. For
example, the tacnodal quintic is given by the equation

Y 2 −X4 −X5 = 0,

which we find by multiplying the two opposite parabolas Y ±X2 = 0
and adding the extra term to make it irreducible as a polynomial.
The double point at the origin is a tacnode because there is only
one tangent line Y = 0 but two power series factors

(Y −X(1 +X)
1
2 )(Y +X(1 +X)

1
2 ).

So, more accurately, a cusp is a double point at which there is only
one place; at a cusp it is also required that the tangent line meet the
curve with intersection multiplicity three; i.e., when we substitute
the equation of the tangent line into the equation of the curve, the
resulting equation should have zero as a triple root. For example,
by substituting the equation of the tangent line Y = 0 into the
equation of the cuspidal cubic Y 2 − X3 = 0, we get the equation
X3 = 0, which has zero as a triple root.
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VIII. Places at Other Points

To find the number of places at any finite point, translate the
coordinates to bring that point to the origin. To find the number
of places at a point at infinity, homogenize and dehomogenize. For
example, by homogenizing the nodal cubic, i.e., by multiplying the
various terms by suitable powers of a new variable Z so that all the
terms acquire the same degree, we get

Y 2Z −X2Z −X3 = 0.

By putting Z = 0 we get X = 0, i.e., the line at infinity Z = 0
meets the nodal cubic only in the point P for which X = 0. By a
suitable dehomogenization, i.e., by putting Y = 0, we get

Z −X2Z −X3 = 0.

Now, P is at the origin in the (X,Z)-plane; the left-hand side of
the above equation is analytically irreducible, i.e., it does not factor
as a power series. Thus the nodal cubic has only one place at P.
Consequently, in view of the above theorem, the nodal cubic may
be expected to be a polynomial curve. To get an actual polynomial
parametrization, substitute Y = tX in the equation Y 2+X2−X3 =
0 to get

t2X2 −X2 −X3 = 0;

cancel the factor X2 to obtain X = t2 − 1 and then substitute this
into Y = tX to get Y = t3 − t. Thus

X = t2 − 1 and Y = t3 − t

is the desired polynomial parametrization. As a second example,
recall that the nodal cubic Y 2 − X2 − X3 = 0 has two places at
the origin, and the tangent line T given by Y = X meets this
cubic only at the origin. Therefore “by sending” T to infinity we
could get a new cubic having only one point but two places at
infinity; so it must be a rational curve that is not a polynomial
curve. To find the equation of the new cubic, make the rotation
X ′ = X−Y and Y ′ = X +Y to get −X ′Y ′− ( 1

8 )(X ′+Y ′)3 = 0 as
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the equation of the nodal cubic and X ′ = 0 as the equation of T. By
homogenizing and multiplying by −8 we get 8X ′Y ′Z ′+(X ′+Y ′)3 =
0 as the homogeneous equation of the nodal cubic and X ′ = 0
as the equation of T. Labeling (Y ′, Z ′, X ′) as (X,Y, Z), we get
8ZXY + (Z + X)3 = 0 as the homogeneous equation of the new
cubic and T becomes the line at infinity Z = 0. Finally, by putting
Z = 1, we see that the new cubic is given by the equation

8XY + (1 +X)3 = 0.

By plotting the curve we see that one place at the point at
infinity X = Z = 0 corresponds to the parabola-like structure
indicated by the hyperbola-like structure indicated by the two
double arrows. Moreover, Z = 0 is the tangent to the parabola-like
place, whereas X = 0 is the tangent to the parabola-like place. So
this new cubic may be called the para-hypal cubic. To get a rational
parametrization for it, we may simply take the vertical projection.
In other words, by substituting X = t in the above equation, we
get Y = −(1 + t)3/8t. Thus

X = t and Y =
−(1 + t)3

8t
.

is the desired rational parametrization; it cannot be a polynomial
parametrization.

IX. Desire for a Criterion

In view of the above theorem, it would be nice to have an
algorithmic criterion for a given curve to have only one place at
infinity or at a given point. Recently in [7] I have worked out such
a criterion. See [2] to [6] for general information and [7] for details
of proof; here I shall explain the matter descriptively. As a first
step let us recall some basic facts about resultants.
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X. Vanishing Subjects

In the above discussion I have often said “reviewing this”
and “recalling that.” Unfourtinately, reviewing and recalling may
not apply to the younger generation. Until about thirty years
ago, people learned in high school and college the two subjects
called “theory of equations” and “analytic geometry.” Then these
two subjects gradually vanished from the syllabus. “Analytic
geometry” first became a chapter, then a paragraph, and finally
only a footnote in books on calculus. “Theory of equations”
and “analytic geometry” were synthesized into a subject called
“algebraic geometry.” Better still, they were collectively called
“algebraic geometry.” Then “algebraic geometry” became more and
more abstract until it was difficult to comprehend. Thus classical
algebraic geometry was forgotten by the student of mathematics.
Engineers are now ressurecting classical algebraic geometry, which
has applications in computer-aided design, geometric modeling,
and robotics. Engineers have healthy attitudes; they want to solve
equations concretely and algorithmically, an attitude not far from
that of classical, or high-school algebra. So let us join hands with
engineers.

XI. Victim

Vis-a-vis the “theory of equations,” one principal victim of
the vanishing act was the resultant. At any rate, the Y-resultant
ResY (F,G) of two polynomials

F = a0Y
N+a1Y

N−1+. . .+aN and G = b0Y
M+b1Y

M−1+. . .+bM

is the determinant of the N+M by N+M matrix
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a0 a1 . . . aN 0 . . . . . . 0
0 a0 . . . . . . aN 0 . . . 0
. . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . .
b0 b1 . . . bM 0 . . . . . . 0
0 b0 . . . . . . bM 0 . . . 0
. . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . .


with M rows of the as followed by N rows of the bs. This concept

was introduced by Sylvester in his 1840 paper. It can be shown that
if a0 6= 0 6= b0 and

F = a0

N∏
j=1

(Y − αj) andG = b0

M∏
k=1

(Y − βk)

then

ResY (F,G) = aM0
∏
j

(G(αj)) = (−1)NMbN0
∏
k

F (βk) = aM0 b
N
0

∏
j,k

(αj−βk).

In particular, F and G have a common root if and only if
ResY (F,G) = 0.

XII. Approximate Roots

Henceforth let us consider an algebraic plane curve C defined
by the equation

F (X,Y ) = 0,

where F(X,Y) is a monic polynomial in Y with coefficients that are
polynomials in X, i.e.,

F = F (X,Y ) = Y N + a1(X)Y N−1 + . . .+ aN (X),

where a1(X), . . . , aN (X) are polynomials in X. We want to describe
a criterion for C to have only one place at infinity. As a step toward
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this, given any positive integer D such that N is divisible by D, we
would like to find the Dth root of F . We may not always be able to
do this, because we wish to stay within polynomials. So we do the
best we can. Namely, we try to find

G = G(X,Y ) = Y N/D + b1(X)Y (N/D)−1 + . . .+ bN/D(X),

where b1(X), . . . , b(N/D)(X) are polynomials in X, such that GD
is as close to F as possible. More precisely, we try to minimize the
Y -degree of F −GD. It turns out that if we require

degY (F −GD) < N − (N/D),

then G exists in unique manner; we call this G the approximate
Dth root of F and we donate it by app(D,F ). In a moment, by
generalizing the usual decimal expansion, we shall give an algorithm
for finding app(D,F ). So let us revert from high-school algebra to
grade-school arithmetic and discuss decimal expansion.

XIII. Decimal Expansion

We use decimal expansion to represent integers without
thinking. For example, in decimal expansion,

423 = (4 × 100) + (2 × 10) + 3.

We can also use binary expansion, or expansion to the base 12, and
so on. Quite generally, given any integer P > 1, every non-negative
integer A has a unique P-adic expansion, i.e., A can uniquely be
expressed as

A =
∑

AjP
j with non− negative integers Aj < P,

where the summation is over a finite set of non-negative integers
j. We can also change bases continuously. Namely, given any finite
sequence n = (n1, n2, . . . , nh+1) of positive integers such that n1 = 1
and nj+1 is divisible by nj for 1 ≤ j ≤ h, every non-negative integer
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A has a unique n-adic expansion; i.e., A can uniquely be expressed
as

A =

h+1∑
j=1

ejnj ,

where e = (e1, . . . , eh+1) is a sequence of non-negative integers
such that ej < (nj+1)/(nj) for 1 ≤ j ≤ h. In analogy with P -adic
expansions of integers, given any

G = G(X,Y ) = YM + b1(X)YM−1 + . . .+ bM (X),

where b1(X), . . . , bM (X) are polynomials in X, every polynomial
H = H(X,Y ) in X and Y has a unique G-adic expansion

H =
∑

HjG
j ,

where the summation is over a finite set of non-negative integers j
and where Hj is a polynomial in X and Y whose Y -degree is less
than M . In particular, if N/M equals a positive integer D, then as
G-adic expansion of F we have

F = GD +B1G
D−1 + . . .+BD,

where B1, . . . , BD are polynomials in X and Y whose Y -degree is
less than N/D. Now clearly,

degY (F −GD) < N − (N/D) if and only if B1 = 0.

In general, in analogy with Shreedharacharya’s method of solving
quadratic equations by completing the square, for which reference
may be made to [8] (and assuming that in our situation 1/D makes
sense), we may “complete the Dth power” by putting G′ = G +
(B1/D) and by considering the G′-adic expansion

F = G′D +B′1G
′D−1 + . . .+B′D,

where B′1, . . . , B′D are polynomials in X and Y whose Y -degree is
less than N/D. We can easily see that if B1 6= 0, then degYB′1 <
degYB1. It follows that by starting with any G and repeating
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this procedure D times, we get the approximate Dth root of F .
Again, in analogy with n-adic expansion, given any sequence g =
(g1, . . . , gh−1), where gj is a monic polynomial of degree nj in Y
with coefficients that are polynomials in X, every polynomial H in
X and Y has a unique g-adic expansion

H =
∑

He

h+1∏
j=1

g
ej
j , where He is a polynomial in X

and where the summation is over all sequences of non-negative
integers e = (e1, . . . , eh+1) such that ej < nj+1/nj for 1 ≤ j ≤ h.

XIV. Places at Infinity

As the next step toward the criterion, we associate several
sequences with F as follows. The case when Y divides F being
trivial, we assume the contrary. Now let

d1 = r0 = N, g1 = Y, r1 = degXResY (G, g1),

and

d2 = GCD(r0, r1), g2 = app(d2, F ), r2 = degXResY (F, g2),

and

d3 = GCD(r0, r1, r2), g3 = app(d3, F ), r3 = degXResY (F, g3),

and so on, where we agreed to put

degXResY (F, gi) = −∞ if ResY (F, gi) = 0

and
GCD(r0, r1, . . . , ri) = GCD(r0, r1, . . . , rj)

if r0, r1, . . . , rj and integers and j < i and rj+1 = rj+2 = . . . =
ri = −∞. Since d2 ≥ d3 ≥ d4 ≥ . . . are positive integers, there
exists a unique positive integers h such that d2 > d3 > . . . >
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dh+1 = dh+2. Thus we have defined the two sequences of integers
r = (r0, r1, . . . , rh) and d = (d1, d2, . . . , dh+1) and a third sequence
g = (g1, g2, . . . , gh+1), where gj is a monic polynomial of degree
nj = d1/dj in Y with coefficients that are polynomials in X. Now,
for the curve C defined by F (X,Y ) = 0, we are ready to state the
criterion.

CRITERION for having only one place at infinity. C has only
one place at infinity if and only if dh+1 = 1 and r1d1 > r2d2 >
. . . > rhdh and gj+1 is degree-wise straight relative to (r, g, gj) for
1 ≤ j ≤ h (in the sense we shall define in a moment).

To spell out the definition of degree-wise straightness, for every
polynomial H in X and Y we consider the g-adic expansion

H =
∑

He

h+1∏
j=1

g
ej
j ,

where He is a polynomial in X and where the summation is over
all sequences of non-negative integers e = (e1, . . . , eh+1) such that
ej < nj+1/nj for 1 ≤ j ≤ h. We define

fing(r, g,H) = max(

h∑
j=0

ejrj) with e0 = degXHe,

where the max is taken over all e for whichHe 6= 0 = eh+1; here fing
is supposed to be an abbreviation of the phrase “degree-wise formal
intersection multiplicity,” which in turn is meant to suggest some
sort of analogy with intersection multiplicity of plane curves. For
1 ≤ j ≤ h, let u(j) = nj+1/nj and consider the gj-adic expansion

gj+1 = g
u(j)
j +

u(j)∑
k=1

gjkg
u(j)=k
j ,

where gjk is a polynomial in X and Y whose Y -degree is less than
nj . We say that gj+1 is degree-wise straight relative to (r, g, gj) if

(u(j)/k)fing(r, g, gjk) ≤ fing(r, g, gju(J)) = u(j)[fing(r, g, gj)]
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for 1 ≤ k ≤ u(j); the adjective straight is meant to suggest that
we are considering some kind of generalization of Newton Polygon
(for Newton Polygon, see [9]).

XV. Places at a Given Point

To discuss places of the curve C defined by F (X,Y ) = 0 at a
given finite point, we may suppose that the point has been brought
to the origin by a translation and rotation of coordinates and
that neither X nor Y divides F . By the Weierstrass Preparation
Theorem, we can write

F (X,Y ) = δ(X,Y )F ∗(X,Y ),

where δ(X,Y ) is a power series in X and Y with δ(0, 0) 6= 0 and
F ∗ is a distinguished polynomial; i.e.,

F ∗ = F ∗(X,Y ) = Y N
∗

+ a∗1(X)Y N
∗−1 + . . .+ a∗N∗(X)

and a∗1(X), . . . , a∗N∗(X) are power series in X that are zero at
zero. By ordX of a power series in X we mean the degree of the
lowest degree term present in that power series. We also note that
in the present situation, the approximate roots of F ∗ are monic
polynomials in Y whose coefficients are power series in X. Now let

d1 = r0 = N∗, g1 = Y, r1 = ordXResY (F ∗, g1),

and

d2 = GCD(r0, r1), g2 = app(d2, F
∗), r2 = ordXResY (F ∗, g2),

and

d3 = GCD(r0, r1, r2), g3 = app(d3, F
∗), r3 = ordXResY (F ∗, g3),

and so on, where we agree to put

ordXResY (F ∗, gi) =∞ if ResY (F ∗, gi) = 0
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and
GCD(r0, r1, . . . , ri) = GCD(r0, r1, . . . , rj)

if r0, r1, . . . , rj are integers and j < i and rj+1 = rj+2 = . . . =
ri = ∞. Since d2 ≥ d3 ≥ d4 ≥ . . . are positive integers, there
exists a unique positive integer h such that d2 > d3 > . . . >
dh+1 = dh+2. Thus we have defined the two sequences of integers
r = (r0, r1, . . . , rh) and d = (d1, d2, . . . , dh+1) and a third sequence
g = (g1, g2, . . . , gh+1), where gj is a monic polynomial of degree
nj = d1/dj in Y with coefficients that are power series in X. For
the curve C defined by F (X,Y ) = 0, we are ready to state the main
result of this section.

CRITERION for having only one place at the origin. C has
only place at the origin if and only if dh+1 = 1 and r1d1 < r2d2 <
. . . < rhdh and gj+1 is straight relative to (r, g, gj) for 1 ≤ j ≤ h
(in the sense which we shall define in a moment).

To spell out the definition of straightness, first note that in the
present situation, the coefficients of a g-adic expansion are power
series in X. Now for every polynomial H in Y with coefficients that
are power series in X, we consider the g-adic expansion

H =
∑

He

h+1∏
j=1

g
ej
j ,

where He is a power series in X and where the summation is over
all sequences of non-negative integers e = (e1, . . . , eh+1) such that
ej < nj+1/nj for 1 ≤ j ≤ h. We define

fint(r, g,H) = min(

h∑
j=0

ejrj) with e0 = ordXHe,

where the min is taken over all e for which He 6= 0 = eh+1; here fint
is supposed to be an abbreviation of the phrase “formal intersection
multiplicity,” which in turn is meant to suggest some sort of analogy
with intersection multiplicity of plane curves. For 1 ≤ j ≤ h, let

80



u(j) = nj+1/nj and consider the gj-adic expansion

gj+1 = g
u(j)
j +

u(j)∑
k=1

gjkg
u(j)−k
j ,

where we note that in the present situatition, the coefficients gjk
are polynomials of degree less than nj in Y whose coefficients are
power series in X. We say that gj+1 is straight relative to (r, g, rj)
if

(u(j)/k)fint(r, g, gjk) ≥ fint(r, g, gju(j)) = u(j)[fint(r, g, gj)]

for 1 ≤ k ≤ u(j); again, the adjective straight is meant to suggest
that we are considering some kind of generalization of Newton
Polygon.

XVI. Problem

Generalize the above criterion by finding a finitistic algorithm
to count the number of places at infinity or at a given point.

XVII. Example

To illustrate the criterion for having only one place at the origin,
let us take

F = F (X,Y ) = (Y 2 −X3)2 +XpY −X7,

where p is a positive integer to be chosen. Now

F ∗ = F and d1 = r0 = N∗ = N = 4 and g1 = Y

and hence

ResY (F, g1) = F (X, 0) = X6−X7 and r1 = ordXResY (F, g1) = 6.

Therefore,
d2 = GCD(r0, r1) = GCD(4, 6) = 2
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and hence

g2 = app(d2, F ) = Y 2 −X3 = (Y −X3/2)(Y +X3/2).

Consequently,

ResY (F, g2) = F (X,X3/2)F (X,−X3/2) =

= (Xp+3/2 −X7)(−Xp+3/2 −X7) = −X2p+3 +X14, (IX.1)

and hence

r2 = ordXResY (F, g2) =

[
14 if p > 5;

2p+ 3 if p ≤ 5

Therefore,

d3 =

[
2 if p > 5;

1 if p ≤ 5
and

[
1 if p > 5;

2 if p ≤ 5

and

r1d1 =

[
24 ≤ 26 = (2p+ 3)d = r2d2 if p > 5;

24 6= 22 6= (2p+ 3)d2 = r2d2 if p ≤ 5

Now, if p = 5, then

g11 = 0, and g21 = 0

and
g12 = X, and fint(r, g,X3) = 3r0 = 12 = 2r1

and

g22 = X5Y −X7, and fint(r, g,X5Y −X7) = 5r0 + r1 = 26 = 2r2,

and hence gj+1 is straight relative to (r, g, gj) for 1 ≤ j ≤ 2. Thus
we see that if p > 5, then h = 1 and dh+1 = 2, whereas if p < 5,
then h = 2 and dh+1 = 1 and r1d1 > r2d2; finally, if p = 5, then
h = 2 and dh+1 = 1 and r1d1 ≤ r2d2 and gj+1 is straight relative
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to (r, g, gj) for 1 ≤ j ≤ 2. Therefore, by the criterion we conclude
that C has only one place at the origin if and only if p = 5.

Exercises

1. In the text, translate the sentences italicized.

2. What key words and phrases would you use to describe the
difference between a parabola and a hyperbola?

3. Identify the sentences with the Present Perfect. Explain why
this form is used there.

4. Find two verbs in the text with the same or similar meaning
to the following: to remove one thing and put something else in its
place. Use them in your own sentences.

5. Insert prepositions:
to be equal ... , to substitute smth ... smth, to multiply smth

... smth, places ... infinity, to correspond ... smth, ... other words,

... any rate, ... particular, ... analogy with smth, to be relative ...
smth, the conic ... question, ... the one hand ... the other hand, to
tend ... zero, a footnote in books ... calculus.

6. a) Write down phrases from the text which are used to
rephrase or give examples.

b) What does abbreviation i.e. stand for?

7. Give the English equivalents of:
1) можно показать, что
2) давайте отметим, что
3) путем подстановки мы получаем
4) можно описать следующим образом
5) здесь мы подразумеваем, что
6) чтобы сделать это более наглядным, мы введем
7) эти точки можно рассматривать как
8) эту мысль можно пояснить, изображая
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9) мы можем перефразировать наблюдение, сделанное выше,
говоря, что

10) тогда и только тогда
11) напомним, что
12) точнее
13) хотя это уравнение не может быть представлено в виде
14) а именно: путем решения этого уравнения, мы получаем
15) когда мы подставляем уравнение касательной в уравне-

ние кривой
16) полагая, что Z = 0, мы получаем
17) левая часть вышеупомянутого уравнения
18) чтобы получить желаемый результат
19) что, в свою очередь, означает
20) в степени меньшей, чем

8. Compare different uses of to give and to do. Translate the
sentences into Russian.

a) The parabola is given by the equation y2 = X.
b) In the above paragraph we have given the equations of

parabola, hyperbola and ellipse in their standard form.
c) Given the general equation of conic ..., by a linear change

of coordinates, we can bring it to one of the above four standard
forms ...

d) We did not start with the circle ... because then the highest
degree terms x2+y2 ... do not have two factors, but we need complex
numbers to find them.

e) Here we are assuming that the conic in question does not
degenerate into one or two lines.

f) More precisely, the nodal cubic has two places at the origin,
because, although its equation cannot be factored as a polynomial,
it does have two factors as a power series in X and Y ; namely, by
solving the equation we get ... .

9. Write a summary of the text “Vanishing Subjects” in one or
two sentences.
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10. Read the quotations below and answer the questions.
Enrico Fermi (1901-54), Italian physicist.
Young man, if I could remember the names of these particles, I

would have been a botanist.
1. Are you surprised?
2. Is it really necessary to have factual knowledge?
3. Which is better for you – to derive formulas quickly when

needed or know them by heart?

Charles Babbage (1792-1871), British mathematician.
A young man passes from our public schools to the universities,

ignorant almost of the elements of every branch of useful knowledge.
4. Do you agree with the statement? Give reasons.
5. What kind of useful knowledge did Babbage speak about?
6. Has the situation changed since then?
7. What changes would you propose?

Niels Henrik David Bohr (1885-1962), Danish physicist.
How wonderful that we have met with a paradox. Now we have

some hope of making progress.
George Bernard Shaw (1856-1950), British playwright, poet

and critic.
Science is always wrong. It never solves a problem without

creating ten more.
8. Try to confirm Bohr’s idea by examples.
9. Do you agree that real progress can’t be made without

paradoxes?
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X. Mathematics
after Forty Years
of the Space Age

Solomon W. Golomb, The Mathematical Intelligencer, vol. 21,
number 4, Fall 1999, pp. 38-44.

When I was а graduate student at Harvard, in the early 1950s,
the question of whether anything that was taught or studied in the
Mathematics Department had аnу practical applications could not
even bе asked, let alone discussed. This was not unique to Harvard.
Good mathematics had to bе pure mathematics, and bу definition
it was not pemissible to talk about possible applications of рurе
mathematics.

This view was not invented bу G.H. Hardy (1877-1947), but he
was certainly оnе of its most eloquent and influential exponents. In
А Mathematician’s Apology (Cambridge U. Press, 1940) he wrote
(р. 29), “Very little of mathematics is useful practically, and ... that
little is comparatively dull”; and (р. 59), “The ’real’ mathematics
of the ’real’ mathematicians, the mathematics of Fermat and Euler
and Gauss and Riemann, is almost wholly ’useless’ ”; and (р. 79),
“We have concluded that the trivial mathematics is, оn the whole,
useful, and that the real mathematics, оn the whole, is not.” In
order to force external reality into his rhetorical model, Hardy
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decided to include leading theoretical physicists in his саnоn of
“real” mathematicians, but to justify this bу saying that their work
had nо real utility anyway. Thus, he wrote (р. 7l), “I count Maxwell
and Einstein, Eddington and Dirac among ’real’ mathematicians.
The great modem achievements of applied mathematics have bееn
in relativity and quantum mechanics, and these subjects are, at
present at anу rate, almost as ’useless’ as the theory of numbers.”

Remember that this was in 1940; and Hardy also wrote (р.
80), “There is оnе comforting conclusion which is easy for а real
mathematician. Real mathematics has nо effects оn war. No оnе
has yet discovered anу warlike purpose to bе served bу the theory
of numbers or relativity, and it seems very unlikely that anуоnе
will do so for manу years.” Не also asserted (рр. 4l-42), “Only
stellar astronomy and atomic physics deal with ’large’ numbers,
and they have very little more practical importance, as yet, than
the most abstract pure mathematics.” Today, 50 years after Hardy’s
death, it seems incredible that а book so at odds with reality was
so influential for so manу years.

It is ironic that Hardy’s Apology was in fact not directed to
mathematicians at аll. After the dreadful carnage of World War
I, and the realization that “the War to end Wars” hadn’t really
changed the world, pacifism was very widespread in England,
and was effectively the established religion at Oxbridge between
the Wars. The extreme attempts bу Stanley Baldwin and Neville
Chamberlain – who bеtween them occupied 10 Downing Street
from 1935 to 1940 – to avoid antagonizing Нitler сan only bе
understood in this context. It was primarily to the non-scientists
at Oxford and Cambridge that Hardy wanted to proclaim the
harmlessness of mathematics. Hardy indicates that the Apology,
in 1940, was an elaboration of his inaugural lecture at Oxford, in
1920, when the revulsion at the horrors of war would have been
particularly vehement; and that he was reasserting his position
that “mathematics [is] harmless, in the sense in which, for example,
chemistry plainly is not”.

Chemistry, responsible for the poison gases and disfiguring
explosives of the Great War, is Hardy’s chief ехаmple of а “useful”
science, closely followed bу Engineering, which does helpful
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things like building bridges, but destructive things as well, like
designing warplanes and other munitions. In А Mathematician’s
Apology, Hardy is anxious to persuade his readership that “real”
mathematics (especially the kind done bу Hardy himself) is а noble
aesthetic endeavor, akin to poetry, painting, and music, and has
nothing in common with merely “useful” subjects like chemistry
and engineering, which are also destructive in the service of
warfare. А mere two years later, after the “blitz” bombing of
London, Hardy’s pacifist audience in England would have almost
completely disappeared; but as а Mathematician’s Manifesto, his
Apology remained influential in mathematical circles for decades.

David Hilbert (1862-1943), regarded bу manу as the leading
mathematician of the first four decades of the twentieth century,
and who largely defined the agenda for twentieth-century
mathematics with his famous list of twenty-three outstanding
unsolved problems, presented at the International Congress of
Mathematicians in Paris in 1900, largely shared and advocated
the view advanced in Hardy’s Apology. However, Hilbert’s list
had several problems motivated bу numerical analysis, and one
asking for а proper, rigorous mathematical formulation of the laws
of physics. Coming just ahead of the discovery of relativity and
quantum mechanics, this problem led to interesting mathematical
work in directions Hilbert could not have anticipated, but in which
he actively participated.

Another famous professor at Göttingеn during the Нilbert
epoch was Felix Klеin, who had а much broader appreciation of
applications. According to а famous story, а reporter once asked
Klеin if it was true that there was а conflict between “pure” and
“applied” mathematics. Klеin replied that it was wrong to think
of it as а conflict, that it was really а complementarity. Each
contributed to the other. The reporter then went to Hilbert,
and told him, “Klеin says there’s nо conflict between pure and
applied mathematics.” “Yes,” said Hilbert, “of course he’s right.
How could there possibly bе а conflict? The two have аbsolutely
nothing in common.” Since Hilbert, unlike Hardy, did work in
areas of mathematics with obvious аррliсаtions, and if the quote is
authentic rather than apocryphal, the fundamental distinction he
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mау have seen between pure and applied mathematics would likely
have involved motivation - do we study it because it is beautiful or
bеcause it is useful?

Нilbert’s illustrious contemporary and leading rival for the title
of “greatest mathematician of the age” was Jules Henri Poincaré
(1854-1912), а cousin of Raymond Poincaré (thrice Premier of
France between 1912 and 1929, and President of France for seven
years that included World War I). There is nо question that Henri
Poincare worked in some of the most obviously аррliсаble areas of
mathematics. Yet even Poincaré asserted: “The scientist does not
study nature because it is useful; he studies it because he delights
in it, and he delights in it because it is beautiful. If nature were
not beautiful, it would not bе worth knowing, and if nature were
not worth knowing, lifе would not bе worth living.” Мanу leading
scientists who have made major practical discoveries would share
this view, but it is significantly different from Hardy’s message.
Nowhere does Poincaré suggest that applicable science, or useful
mathematics, is in anу way inferior, but rather that the systematic
study of nature turns out to bе inherently beautiful.

Through the ages, the very greatest mathematicians have always
bееn interested in applications. That was certainly true of Е.M.
Bell’s “three greatest mathematicians of all time”: Archimedes,
Newton, and Gauss. It was equally true of Euler, Lagrange,
Laplace, and Fourier. Еvеn in the first half of the twentieth
century, it was true of Неrmann Weyl, Norbert Wiener, and John
vоn Neumann. As we соmе to the end of the twentieth century, the
earlier insistence оn the desired inapplicability of pure mathematics
seems almost quaint, though one lingering legacy is that the label
“applied mathematics” retains а pejorative taint and an aura of
non-respectability in certain circles.

I want to examine the questions of when and how the concept
of inviolable purity bесаmе entrenched in manу departments of
mathematics bу the end of the nineteenth century, and what has
happened in the past 40 years to weaken this presumption.

In the United States, the beginning of the modem research
university dates back only to 1876, with the founding of Johns
Hopkins, which was based оn а German model that was only
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а few decades older. Prior to this period, the modern division
of knowledge into departments and disciplines was much less
rigid. In Newton’s day, the term “natural philosophy” covered
all of the natural sciences. The chair which Gauss (1777-1855)
held at Göttingеn was in Astronomy. Only when there were
separate, clearly defined departments of mathematics was it
necessary to invent а rationale to support their independence from
either established or newly emerging fields which sought to apply
mathematics. Оn the other hand, it was not necessary to justify the
notion that every university needed а Department of Mathematics.

From the time of Plato’s Academy, all through the Middle
Ages, and into the rise of post-medieval universities, mathematics
had always bееn central. The traditional “scholastic curriculum”
consisted of two parts: the more elementary trivium, with its thrее
language-related subjects – logic, grammar, and rhetoric; and the
more advanced quadrivium, with its four mathematics – related
subjects-geometry, astronomy, arithmetic (i.e., number theory),
and music (i.e., harmonic relationships). At а time when Latin
and Greek were indispensable parts of а university education, nо
оnе would have remotely considered eliminating mathematics as
“impractical.” Those students seeking а liberal university education,
whether at Oxbridge in the U.K or in the Ivy League in the U.S.,
were not thought to bе соncerned with learning а trade and earning
а living. That саmе much later. And high-budget research, with
the concomitant requirement to set funding priorities, was not yet
а part of the university scene.

So, in the late nineteenth century, university mathematics
departments had а firm franchise to exist, and соnsiderable
latitude to define themselves. Much was happening in mathematics
at that timе (as well as ever since). The abstract approach was
being applied, especially to algebra. The algebraic approach was
being applied, especially to geometry and topology; analytic
function theory was in full blооm; and а new standard of rigor
had emerged. In manу areas, mathematics was running so far
ahead of applications that it was widely assumed that most of
these fields would never have anу. This was also true of сеrtain
classical areas, like number theory, which was developing rapidly
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as the beneficiary of new techniques from function theory and
modern algebra, and had nо foreseeable applications. Rather than
bе apologetic about the lack of applications for manу areas, leading
mathematicians and mathematics departments decided to turn this
possible defect into а virtue. (In this, they anticipated а basic tenet
of Madison Аvеnuе: “If уоu can’t fix it, feature it.”) In fact, the best
mathematics consistently found very important applications, but
often not until manу decades later. Riemann’s “clearly inapplicable”
non-Euclidean differential geometry (since everyone was сеrtain
that we live in а Euclidean universe), from the 1850s, bесаmе the
mathematical basis for Einstein’s General Theory of Relativity
some 60 years later. Purely abstract concepts in group theory from
around 1900 bесаmе central to the quantum mеchanics of the 1930s
and 1940s, and to the particle physics of the 1950s and onward.
Finite fields, invented bу Evariste Galois, who died in 1832, were
considered the purest of pure mathematics, but since 1950 they
have bесоmе the basis for the design of еrrог-соrrесting codes,
which are now used indispensably in everything from computer
data storage systems to deep space communications to preserving
the fidelity of music recorded оn compact disks. George Boole’s
nineteenth-century invention of formal mathematical logic bесаmе
the basis for electronic switching theory, from 1940 onward, and in
turn for digital соmputer design.

Hardy’s most precious area of inapplicable pure mathematics
was prime number theory. Edmund Landau, in his Vorlesungen
über Zahlentheorie (“Lectures оn Number Theory”, Leipzig, 1927),
quotes оnе of his teachers, Gordan, as frequently remarking, “Die
Zahlentheorie ist nutzlich, weil man nämlich mit ihr promovieren
kann.” (“Number Theory is useful because уоu сan get а Ph.D.
with it.”) Today, the most widely used technique for “public key
cryptography” is the so called RSA (Rivest, Shamir, and Adleman)
algorithm, which depends оn several theorems in prime number
theory, and the observation that factoring а very large number into
primes (especially if it is а product of only two big ones) is much
harder than testing an individuаl large number for primality.

I think it is fair to say that in а very special sense, Number
Theory has bесоmе а type of applied mathematics, and I’m not
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referring to number theory’s applications in communication signal
design and cryptography. Rather, I refer to the fact that Number
Theory, which has rather limited methods of its оwn, has bе-
еn the beneficiary of powerful applications to it from analytic
function theory, from modern algebra, and most recently from
algebraic geometry, as with Andrew Wiles’s proof of “Fermat’s
Last Theorem.”

In 1940, topology would have bееn high оn most реоple’s
lists of inapplicable mathematics. Within topology, knot theory
would have seemed particularly useless. Yet today, knot theory
has extremely important applications in physics (to both quan-
tum mechanics and superstring theory) and in molecular biology
(to the knotted structures of both nucleic acids and proteins).
The topology of surfaces is also much involved in superstring
theory, including the structures which superstrings mау take in
multidimensional spaces. Еvеn graph theory, the “trivial” оnе-
dimensional case of topology, has blossomed into а major discipline
where the boundary between “pure” and “арplied” is virtually
invisible. Until recently, tiling problems were largely relegated to
the domain of “recreational mathematics” (an obvious oxymoron
to most non-mathematicians, but а pleonasm to true believers).
Then, а decade or so ago, Roger Penrose’s work оn small sets
of tiling shapes which сan bе used to tile the entire plane, but
оnlу nоn-periodically, was found to underlie the entire vast field of
“quasicrystals.”

I could give manу, manу more examples of how topics and
results from the “purest” areas of mathematics have found very
important applications, but I believe I have made mу point. It
mау still bе necessary for some Mathematics Departments to
defend themselves from bеing turned into short-term providers of
assistance to other disciplines which are consumers rather than
producers of mathematics; but the basic principle that good “pure”
mathematics is almost сеrtain to have very important applications
eventually is now widely recognized. For most mathematicians
today, the distinction that matters is between good mathematics
and bad mathematics, not between pure mathematics and applied
mathematics. Tо bе fair to Hardy, this was the distinction he
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was trying to make in А Mathematician’s Apology between “real”
mathematics and “trivial” mathematics. Where he went off the
deep end was in trying to insist that real mathematics is useless,
and that useful mathematics is trivial.

Like manу of mу generation, I was attracted to mathematics
not bу Hardy’s Apology, but bу Е.M. Bell’s Меn оf Mathematics,
and mу early interest in number theory was partly motivated bу
the accessibility of the subject. The first mathematics book I ever
bought, with mу оwn almost non-existent disposable inсоmе while
I was still in high school, was Carmichael’s thin volume Theory
оf Numbers, in hard cover. Two years later, I was systematically
reading Landau’s Vorlesungen über Zahlentheorie, still оn mу оwn.
When I саmе to Harvard as а graduate student, I already assumed
that I would do а thesis in prime number theory. This was а
respectable branch of mathematics at Harvard, although nоnе of
the faculty there specialized in it. David Widder, who had recruited
me to bе his student mу very first day of classes at Harvard, and
who included an analytic proof of the Prime Number Theorem
in his book The Laplace Transform, was happy to sponsor mу
efforts. Не had spent time as а post-doc of Hardy and Littlewood
in Cambridge, where the highlight of his sojourn was attending а
cricket match seated between these two famous gentlemen.

For help and inspiration, I drove to the Institute for Advanced
Study in Princeton оnе morning in October, 1953, quite un-
announced, and went to see Аtlе Selberg. I had discovered an
identity involving von Mangoldt’s lambda function, which I
thought could bе useful in anаlytic number theory. Му identity
looked slightly like Selberg’s Lemma in his famous Elementary
Proof of the Prime Number Theorem. Нis first reaction was to
think that mу identity was false. Trying to disprove it, he convinced
himself in the next ten minutes that it was true. Не then spent
the rest of the day with me, exploring ways I proposed to use
this identity, and making manу helpful suggestions. I learned оnlу
later that Selberg had а reputation for being totally reserved and
unapproachable.

The other number-theorist who was very helpful was Paul
Еrdős, who was always totally approachable if уоu wanted to talk
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about mathematics. I learned only years later of the supposed feud
between Selberg and Еrdős. Years later still, in November, 1963, I
saw them both in the same room at а Number Theory Conference
at Caltech. It was the day John Kennedy was assassinated. I
remember the session chairman announcing the news flash that
JFK was dead. After nо more than half а minute, the meeting
resumed as before. I suspect it was the оnlу activity in the whole
country that Friday afternооn that wasn’t shut down. I mentioned
this long afterward to an insightful mathematician friend, and I
commented that these mathematicians hadn’t reacted to the news
of JFK’s death. “No, уоu don’t understand,” he told me. “They’re
mathematicians. That was their reaction.”

I could have finished uр at Harvard in the spring of 1955,
in timе for mу twenty-third birthday, but having bееn awarded
а Fulbright fellowship for study in Norway, I decided to finish
mу thesis writeup there. I wasn’t even sure who was still active
in Norway when I applied for the fellowship. There were mаnу
famous Norwegian mathematicians, but I knew that Niels Henrik
Abel, Sophus Lie, and Axel Thue were long dead, and that several
others, including Osvald Veblen, Einar Нille, Øystein Ore, and
of course Atle Selberg had resettled in the United States. From
Landau’s book I had learned about Viggo Brun’s sieve method in
prime number theory, but for all I knew Brun was also long dead.
Fortunately this was not the case. Brun turned 70 the month I
arrived, in June, 1955, but he did not retire until а year later,
and he lived well beyond age 90. From Landau’s austere Satz,
Beweis approach, I could prove Brun’s Theorem, that the series
consisting of the reciprocals of the twin primes is either finite or
соnvergent, but I had nо understanding of what motivated it, or
why it worked. It was оnlу when Brun explained his method to mе
that it made sense. I included а sieve-derived result in mу thesis,
which I also published in Mathematica Scandinavica. А few years
later, Еrdős got an improvement оn mу result, which he published
in the Australian Journal оf Mathematics, in а paper titled “Оn а
Problem of S. Golomb.” Dozens of people have published papers
titled “Оn а Problem of Еrdős,” but since Еrdős published this оnе,
“Оn а Problem of S. Golomb,” I claim that mу “Еrdős number” is
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minus оne.
For four summers while а graduate student, I worked at the

Мartin Соmрanу, now part of Lockheed-Martin, and bесаmе
quite interested in mathematical communication theory, including
Shannon’s Information Theory, and especially “shift register
sequences,” which were of interest for а variety of communications
applications, but which I discovered were modeled bу polynomials
over finite fields. Shannon’s epic paper, “А Mathematical Theory of
Communication,” was published in 1948, the year after Hardy died,
but had Hardy read and understood it, he would have called it “real”
mathematics, secure in the bеlief, that it was not really “useful.”
After аll, Shannon gave existence proofs that codes could bе
constructed arbitrarily close to certain bounds, with nо hint of how
to find such codes. But what has happened in the past fifty years
is that mathematicians have worked closely with communications
engineers to develop Infоrmаtiоn Theory and Coding in а way
that is simultaneously first-rate “real” mathematics and eminently
practical and useful engineering. In several prominent cases, the
same individual has spanned the entire range from developing the
theoretical mathematics to designing the practical hardware.

I eventually discovered that an important early paper оn linear
recurrences over finite fields was published in 1934 bу Øystein
Ore, but if not for the wide range of applications to several areas
of technology, including communications, I don’t think we would
have а subject classification today in Mathematical Reviews called
“Shift Register Sequences,” corresponding to literally hundreds
of рublished research papers. Perhaps Hardy would have been
disturbed to learn how practical the properties of finite fields have
become-but then, nоnе of his sacred cows has remained untainted.

When I returned from Norway in the summer of 1956, I саmе
to Southern California to work in the Communication Research
Group at the Jet Propulsion Laboratory (JPL), in Pasadena. This
job, which grew out of the interest I had developed in mathematical
communications during mу summer jobs at the Martin Company,
enabled mе to continuе mу search for applications of “useless”
mathematics to practical communications problems. Over the next
seven years I fоrmеd and headed а group of outstanding young
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researchers who developed the systems that made it possible to
communicate with space vehicles as far away as Neptune (three
billion miles from Earth) and beyond.

In 1956, NASA did not yet exist, and JPL was funded bу
the Ordnance Command of the U.S. Armу. They also supported
Wernher von Braun’s group at Redstone Arsenal in Huntsville,
Alabama. The U.S. Armу was prepared to launch а small artificial
satellite in September, 1956, thirteen months before Sputnik,
using а Redstone missile as the launch vehicle, and а small JPL-
built payload with а radio transmitter, but General John Bruce
Medaris, head of the Armу Ballistic Missile Agency, was unable to
get the permission of the Eisenhower administration to proceed.
Unaware that we were in any kind of race with the Soviet Union,
the Eisenhower administration had decided that the U.S. space
program should bе peaceful, and therefore should not use an Armу
missile as the launch vehicle. Instead, we had something called
Project Vanguard under development, for which the launch vehicle
would bе а Navy missile!

The Soviet Union’s launch of Sputnik l, оn October 4, 1957,
took the world bу surprise. It was visible to the naked еуе in the
night sky, and а fairly simple radio receiver could pick uр its “bеер-
bеер” signal. Around November 12, 1957, General Medaris not only
had реmissiоn to launch а satellite using Armу vehicles, but he had
orders to proceed as quickly as possible. Meanwhile, оn December
6, 1957, the first launch of а Vanguard satellite was attempted.
With the entire world press corps watching, there was а spectacular
explosion оn the launch pad. The vehicle was consumed in flames
from the bottom upward.

Eighty days after the authorization to proceed, the Armу
satellite was ready for launch. The first stage was а liquid-fuelled
elongated Redstone rocket, from Huntsville. The second stage was
а cluster of eleven solid-fuel Sergeant missiles from JPL. The third
stage used thrее Sergeant missiles from JPL. And the fourth stage,
built at JPL, was а cylinder about 5 feet long and 8 inches in
diameter, packed with electronic equipment, and sitting atop а
final Sergeant missile. This configuration had never bееn tested,
but the launch of Explorer I, оn January 31, 1958, was а success
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оn the very first try. I had а lab at JPL at that time, where I
studied the properties of shift register sequences ехреrimentally.
During the weeks leading uр to Explorer I, а graduate student
of James Vаn Allen was assembling а radiation detector in mу
lab, with the assistance of mу technicians. It was this detector,
flying оn Explorer I, that “discovered” what саmе to bе known as
the Van Allen Radiation Belts around the earth. Му own special
assignment was to participate in the “early orbit dеtеrminаtiоn” of
the satellite.

After Explorer I was launched from Саре Canaveral, nо signal
was picked uр bу the down-range station оn the Caribbean island
of Antigua. We did not know that the signal had bееn successfully
detected and recorded at our stations in Nigeria and Singapore
until а few days later, when we were notified bу air mail! Amateur
radio groups in Australia and Hawaii reported nothing. We were
understandably worried that we had lost our satellite. We had three
tracking stations widely spaced in Southern California, connected
to JPL only bу ordinary telephone lines. The nominal time for the
satellite to соmе into radio contact over California саmе and went,
with nо detection bу any of our stations. Three minutes passed,
then another three minutes, and still nо detection. There were
many long faces in our orbit dеtеrminаtiоn room at JPL. Then,
about eight minutes late, all three of our tracking stations called
in almost simultaneously. Explorer I was alive and well. Оnе of
the upper stages of the launch rocketry of Explorer I had оvеr-
реrfоrmеd, slightly enlarging the orbit and lengthening the period,
and incidentally increasing its lifetime in orbit. That was an exciting
time to bе at JPL.

While I was at JPL, I learned the real distinction between
“pure research” and “applied research.” In 1959, the Laboratory
director, Dr. William Н. Pickering, decided to fоrm an ad hoc
committee, with representatives from all over JPL, to report оn
the “research environment” and what could bе done to improve it;
and he appointed mе to chair it. I discovered that every member
had strong opinions about what was pure research and what was
applied research, and surprisingly, it had absolutely nothing to do
with the subject matter. It all boiled down to this. What уоu want
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to work оn is pure research. What your boss wants уоu to work оn
is applied research.

Sputnik shocked the American public. The notion that the
Soviets were ahead of us in rocketry contradicted а bаsic tenet
in Vannevar Bush’s influential book Modern Arms and Free Мen,
which argued that а closed non-democratic society like the Soviet
Union couldn’t possibly develop armaments and advanced weapons
as well as we could in the U.S. Bush had developed а very early
analog computer, called the “Bush differential analyzer,” prior to
World War II. During the war, he was Roosevelt’s chief advisor
оn scientific and technological matters. Не delivered the letter
to FDR, drafted bу Szilard and Wigner, and signed bу Einstein,
which led to the Manhattan Project and the Atomic Bоmb. Beyond
that, most of the things Vannevar Bush recommended - at least,
the ones I am aware of were ill-advised. For example, because of his
bias in favor of analog computing, he delayed research оn digital
сomputers until after the war. In Modern Arms and Free Мen, he
not only asserted that the Soviets couldn’t possibly соmе uр with
first-rate weapons, but also that neither we nor they could ever
develop intercontinental ballistic missiles (lCBMs). In 1957, I got
а letter from Bush оn his letterhead stationery as Chairman of
the Board of MIT. Martin Gardner had run an article in Scientific
Аmеncаn about mу “polyominoes,” and included mу proof that а
particular covering of the checker-board with pieces of а сеrtain
shape was impossible, which was shown bу coloring the board in
а particular way. Bush wanted to know why the result would still
hold if уоu didn’t color the board in that particular way! Naturally
I wrote а very polite and patient reply. (Bу the way, “Polyominoes”
is also а subject classification in MR.) But perhaps I am too harsh
оn Dr. Bush. А newly published Bush biography credits him with
creating the post-World-War-II structure of government funding
for university research, which puts many of us in his debt.

The extent to which we were behind the Soviets in the
development of large missiles was mostly а political matter, and
secondarily an engineering issue. Basic science was not really
involved at all. Nonetheless, both the рublic and the politicians
were convinced that а much greater commitment to the support
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and funding of research, especially university research, in all the
basic sciences, including mathematics, was an urgent national
priority. I bеlieve it is very fortunate that this happened, and that
it contributed significantly to the U.S. winning the Cold War some
30 years later, but it had nо relationship to the issue of whether
the U.S. was behind in rocketry.

As уоu will remember, in А Mathematician’s Apology, Hardy
had contended that “real” mathematics is much more similar to
poetry and painting that it is to chemistry or engineering. That
is something that many of us, as mathematicians, might still
like to believe; but the new government funding didn’t extend
to poetry and painting. The rationale for including mathematics
in the new governmental largess required а commitment to the
principle that basic research in mathematics, like basic research in
chemistry or engineering, will ultimately have practical, beneficial
consequences. Suddenly, there was а reason for trying to show that
one’s mathematics had practical uses and implications. This was
not the only reason for the change in attitude about whether good
mathematics could bе useful, but it certainly played а part.

Another major influence has been the development of digital
technology, which has placed new emphasis оn areas of discrete
mathematics that were previously considered inapplicable-like
finite fields, which I’ve already mentioned. Then there is Computer
Science itself, which asks questions in pure mathematics like
finding the соmputational complexity of various procedures, which
turns out to bе extremely practical. Another development has been
Shannon’s mathematical theory of communication, which asks
questions motivated bу applications, but which are more abstract
mathematically than anything in physics. An atom, an electron,
а photon, or а quark – these are all entities in the physical world
whose behavior the physicist attempts to model. But Shannon’s
“bit of information” is а purely mathematical concept. It has nо
mass, nо spin, nо charge, nо momentum – and yet the issues
involved in measuring information in bits, in storing information,
in moving information from one place to another are so important
that we are told that we live in the “Age of Information.”

It is also true that science and engineering have changed
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dramatically in the fifty years since Hardy’s death. Semiconductors
and lasers make nontrivial use of quantum mechanics, and the
people who study them are not restricted to using what Hardy
derisively referred to as “school mathematics.” Biology at the
University level has progressed from butterfly collecting to genome
sequencing. It is not at all clear-cut whether “control theory” is а
topic in mathematics or а branch of engineering.

I’ve never called myself an “applied mathematician.” When
I’m doing mathematics as mathematics I am а mathematician.
When I’m focusing оn applications to соmmunications, I’m а
communications engineer. For the first several years that I worked
оn mathematical communications problems, I didn’t even realize
that there were good journals in which new results in these areas
could and should bе published. That was а lingering aftereffect of
mу Hardy-style brainwashing. I hope I’ve finally outgrown it. In
fact, I hope we’ve all outgrown it. Mathematics isn’t “good” just
because it’s inapplicable, and it isn’t “bad” just because it is.

In fairness to Hardy, there are many things inА Mathematician’s
Apology with which most mathematicians will agree or identify.
Hardy asserts that mathematicians are attracted to the subject bу
its inner beauty, rather than bу any overwhelming desire to benefit
humanity. Most mathematicians I know would agree with that.
Even more important, Hardy identifies himself (р. 63) as а Realist
(as the tеrm is used in Philosophy) about mаthеmаtiсs. “I will
state mу оwn position dоgmаtiсallу .... I believe that mаthеmаtiсal
reality lies outside us, that our function is to discover or observe
it, and that the theorems which we prove, and which we describe
grandiloquently as our ’creations’, аrе simрlу our notes of our
observations. This view has bееn held, in оnе fоrm or another,
bу many philosophers of high reputation from Plato onwards
.... ” The great mаjority of mаthеmаtiсians share this view about
mathematics. Plato went overboard, trying to extend mаthеmаtiсal
reality to physical reality. Immanuеl Kant explicitly distinguished
between the “transcendental reality” of mаthеmаtiсs and the
(ordinary) reality of the physical universe. Му оwn version of this
distinction is that if the Big Bang had gone slightly differently, or
if we were аblе to spy оn an entirely different universe, the laws of
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physics could bе different from the ones we know, but 17 would still
bе а рrimе numbег. I recently found а very similаr view attributed
to the late great Julia Robinson (1919-1985) in the biography Julia,
а Life in Mathematics, bу her sister, Constance Reid. “I think that
I have always had а basic liking for the natural numbеrs. Tо mе
they аrе the оnе real thing. We can conceive of а сhеmistrу that
is different from ours, or а biology, but we cannot conceive of а
different mathematics of numbеrs. What is proved about numbеrs
will bе а fact in anу universe.” This is also reminiscent of the
fаmоus diсtum of Leopold Кronecker (1823-1891): “Die ganzen
Zahlen hat Gott gemacht; alles anderes ist Menschenwerk.” (“God
mаdе the whole numbеrs; everything else is the work of man.”)

Рlаtоnism (i.e. “Rеalism”) about mаthеmаtics has dissenters.
Sоmе who, in mу view, аrе overly influenced bу quantum
mесhaniсs, would argue that 2−1, where Р is sоmе very large
рrimе numbеr, is neither рrimе nor соmposite, but in sоmе
intеrmеdiаtе “quantum state,” until it is actually tested. Of course,
the Realist view is that it is already оnе or the other (either
рrimе or composite), and we find out which when we test it.
Even less palatable to most mаthеmаtiсians is the “роst-mоdеrn”
criticism of all of “science,” that it is just another cultural activity
of humans, and that its results аrе nо mоrе absolute or inevitable
than works of poetry, musiс, or literature. The еxtrеmе fоrm of
this viewpoint would assert that “4 + 7 = 11” is merely а cultural
prejudice. I will readily concede the оbvious: it requires а reasoning
device like the human brain (or а digital соmрutеr) to реrfоrm
the sequences of steps that we саll “mаthеmаtiсs”. Also, culture
can play an important role in dеtеrmining which mаthеmаtiсal
questions аrе asked, and which mаthеmаtiсal topics аrе studied.
(Our widespread use of the dесimal system is undoubtedly related
to humans having ten fingers.) What I will not соncede is that,
if the sаmе mаthеmаtiсal questions аrе asked, the answers would
соmе out inconsistently in another culture, оn another planet, in
another galaxy, or even in а different universe. For ехаmрlе, the
Greeks were interested in “perfect numbеrs,” numbers like 6 (= l
+ 2 + 3) and 28 (= l + 2 + 4 + 7 + 14) which equal the sum
of their exact divisors (less than the numbеr itself). I can readily
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imаgine а “civilization” with advanced mаthеmаtiсs in which the
notion of “perfect numbеrs” was never fоrmulаtеd. What I cannot
imаginе is а civilization in which perfect numbеrs were defined the
sаmе way as we do, but where 28 was nо longer perfect.

It was Isaac Newton who wrote, “I do not know what I mау
appear to the world; but to mуsеlf I sееm to have bееn only like а
bоу playing оn the seashore, and diverting mуself in now and then
finding а smооthеr реbblе or а prettier shell than ordinary, whilst
the great Ocean of Truth lay all undiscovered before mе.” It is hard
to give а better formulаtiоn of the Realist view of mathematical
truth adhered to bу most mаthеmаticians.

Newton is firmlу entrenched in the pantheons of both
mаthеmаtics and physics. Не certainly erected nо artificial
boundaries between theory and applications. In the three centuries
since he published the Philosophiae naturalis principia mathematica
(the Principia, for short), we have, with еlесtrоnmаgnеtism and
relativity and quantum mесhaniсs, waded deeper into that Ocean
of Truth; but Newton’s laws of mоtiоn and gravitation were
actually sufficient for the launching of Sputnik and Explorer.
Today, 40 years after those satellites first circled the earth, mоst
mаthеmаtiсians - mуsеlf included - have moved farther from
Hardy’s outlook and closer to Newton’s.

Exercises

1. Translate the following sentences into Russian:
1) Nowhere does Poincaré suggest that applicable science, or

useful mathematics, is in any way inferior, but rather that the
systematic study of nature turns out to be inherently beautiful.

2) It was Isaac Newton who wrote, “I do not know what I may
appear to the world; but to myself I seem to have been only like a
boy playing in the seashore, and diverting myself in now and then
finding a smoother pebble or a prettier shell than ordinary, whilst
the great Ocean of Truth lay all undiscovered before me.”

3) Only when there were separate, clearly defined departments
of mathematics was it necessary to invent a rationale to support

102



their independence from either established or newly emerging fields
which sought to apply mathematics.

2. Specify the italicized verbal forms in the sentences below and
translate them into Russian:

1) This job, which grew out of the interest I had developed
in mathematical communications during my summer jobs at the
Martin Company, enabledme to continue my search for applications
of “useless” mathematics to practical communications problems.

2) . . . Hilbert’s list had several problems motivated by numerical
analysis, and one asking for a proper, rigorous mathematical
formulation of the laws of physics.

3) Coming just ahead of the discovery of relativity and quan-
tum mechanics, this problem led to interesting mathematical work
in directions Hilbert could not have anticipated, but in which he
actively participated.

4) Since Hilbert, unlike Hardy, did work in areas of mathematics
with obvious applications, and if the quote is authentic rather than
apocryphal, the fundamental distinction he may have seen between
pure and applied mathematics would likely have involvedmotivation
- do we study it because it is beautiful or because it is useful?

5) The abstract approach was being applied, especially to
algebra. The algebraic approach was being applied, especially to
geometry and topology; analytic function theory was in full bloom;
and a new standard of rigor had emerged.

6) I could have finished up at Harvard in the spring of 1955,
in time for my twenty-third birthday, but having been awarded a
Fulbright fellowship for study in Norway, I decided to finish my
thesis writeup there.

7) Biology at the University level has progressed from butterfly
collecting to genome sequencing.

8) Newton’s laws of motion and gravitation were actually
sufficient for the launching of Sputnik and Explorer.

9) Through the ages, the very greatest mathematicians have
always been interested in mathematics.
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3. Give the English equivalents of the following Russian terms.
Make sure that you know how to spell them.

Прикладная математика, общая теория относительности,
квантовая механика, физика, теория чисел, простое число,
теория функций, дифференциальная геометрия, физика ча-
стиц, теория поля, конечная группа, конечное поле, теория
групп, код с исправлением ошибок, раскладывать число на
простые множители, простота (примарность), теория узлов,
алгебраическая геометрия, теория суперструн, многомерное
пространство, теория замощения, многочлен, линейная рекур-
сия, граница, доказательство существования, цилиндр, дюйм,
фут, показатель степени.

4. Add the missing letters to complete the words below. Use your
dictionary to check your answers, if necessary.

Rese. . . rch, s. . .multan. . . ously, inc. . . dentally, mat. . . ematics,
pol. . . nomial, f...nite, f...eld, proo..., exist...nce, lin...ar, rec...rrence,
ser...es, rec...procal, converg...nt, virt...ally, t...ling, mult...dimen...
ional, cr...ptography, separ...te, dis...ipl...ne, ri...id, qu...int.

5. Using your English-English dictionary, say what words the
following derive from and specify their suffixes and prefixes. Mind
the pronunciation.

Influential, harmlessness, foreseeable, primality, accessibility,
understandably, secondarily, largess, aftereffect.

Using the word in capitals form its derivatives to complete the
sentences below:

APPLY
1. There is no question that Henri Poincaré worked in some of

the most obviously ... areas of mathematics.
2. The ... of the new method was clearly understood by the

leading researchers.
3. In 1940, topology would have been high on most people’s lists

of ... mathematics.
NB! There are the so-called blends, or portmanteaux words,

which take two lexemes and combine them to make one. Usually the
components of a blend are recognizable. Here are some examples.
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breakfast + lunch = brunch
helicopter + airport = heliport
smoke + fog = smog
Channel + Tunnel = Chunnel
Yale + Harvard = Yarvard
slang + language = slanguage
guess + estimate = guesstimate

(See David Crystal “The Cambridge Encyclopedia of the English
Language”, p. 130)

Look through the text once again and find a blend referring to
two famous places in Britain.

6. Complete the sentences below with one word only. Find out
the meaning of the italicized phrases.

1) When I was a graduate student at Harvard, in the early 1950s,
the question of whether anything that was taught or studied in the
Mathematics Department had any practical applications could not
even be asked, let ... discussed.

2) Today, 50 years after Hardy’s death, it seems incredible that
a book so at ... with reality was so influential for so many years.

3) In many areas, mathematics was running so far ... of
applications that it was widely assumed that most of these fields
would never have any.

4) Rather than be apologetic about the lack of applications for
many years, leading mathematicians and mathematics departments
decided to turn this possible defect into a ...

5) ... but I believe I have made my ... .
6) Two years later, I was systematically reading Landau’s

Vorlesungen über Zahlentheorie, still on my ... .
7) It was only when Brun explained his method to me that it

... sense.
8) The Soviet Union’s launch of Sputnik 1, on October 4, 1957,

took the world by ... .
9) It was visible to the ... eye in the night sky, and a fairly simple

radio receiver could pick up its “beep-beep” signal.
10) It all ... down to this.
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7. Explain the use of the articles in the following sentences:
1) “The ‘real’ mathematics of the ‘real’ mathematicians, the

mathematics of Fermat and Euler and Gauss and Riemann,
is almost wholly ‘useless’; and we have concluded that the
trivial mathematics is, on the whole, useful, and that the ‘real’
mathematics, on the whole, is not.”

How far do you agree with this statement? Why?
2) “Another famous professor at Göttingen during the Hilbert

epoch was Felix Klein, who had a much broader appreciation of
application.”

3) “At a time when Latin and Greek were indispensable parts
of a university education, no one would have remotely considered
eliminating mathematics as ‘impractical’. Those students seeking a
liberal university education, whether at Oxbridge in the U.K. or in
the Ivy League in the U.S., were not thought to be concerned with
learning a trade and earning a living.”

4) “An atom, an electron, a photon, or a quark – these are all
entities in the physical world whose behavior the physicist attempts
to model.”

8. “According to a famous story, a reporter once asked Klein if
it was true that there was a conflict between “pure” and “applied”
mathematics. Klein replied that it was wrong to think of it as a
conflict, that it was really a complementarity. Each contributed to
the other. The reporter then went to Hilbert, and told him, “Klein
says there’s no conflict between pure and applied mathematics.”
“Yes,” said Hilbert, “of course he’s right. How could there possibly
be a conflict? The two have absolutely nothing in common.”
Since Hilbert, unlike Hardy, did work in areas of mathematics
with obvious applications, and if the quote is authentic rather
than apocryphal, the fundamental distinction he may have seen
between pure and applied mathematics would likely have involved
motivation - do we study it because it is beautiful or because it is
useful?”

Do you study mathematics because it is beautiful or because it
is useful? Write an essay (approximately 250 words). Remember to
use linking devices to make your piece of writing coherent.
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9. “Culture can play an important role in determining which
mathematical questions are asked, and which mathematical
topics are studied. (Our widespread use of the decimal system is
undoubtedly related to humans having ten fingers.)”

How far do you agree with the above statement? Write an essay
of approximately 250 words. Give examples to prove your opinion.

10. Hardy asserts that mathematicians are attracted to the
subject by its inner beauty, rather than by any overwhelming desire
to benefit humanity. Most mathematicians I know would agree with
that.

What is the inner beauty of mathematics? Write an essay
(approximately 250 words).

11. Read the quotations below. Answer the questions.
Joel Henry Hildebrand (1881-1983), American chemist.
Chemistry is fun!
1. Do you agree with Hildebrand?
2. What made him think so?
3. Do you think that mathematics is fun? Why? Why not?
4. Can a scientist achieve anything serious with Hildebrand’s

idea in mind?

Max Born (1882-1970), German physicist.
All attempts to adapt our ethical code to our situation in the

technological age have failed.
Jacob Bronowski (1908-74), Polish-born British mathematician

and science writer.
Science has nothing to be ashamed of, even in the ruins of

Nagasaki.
John Burden Sanderson Haldane (1892-1964), British

geneticist, physiologist and biochemist.
Man armed with science is like a baby with a box of matches.
Adlai Ewing Stevenson (1900-65), American politician.
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Nature is neutral. Man has wrested from nature the power to
make the world a desert or make the deserts bloom. There is no
evil in the atom; only in men’s souls.

1. Which of the scientists do you agree with?
2. Is there any contradiction among them?
3. Could you reconcile their ideas with each other?
4. Do you think Haldane’s quotation is related to that of Born?

And Stevenson’s one to that of Bronowski?
5. Give examples justifying Haldane’s words. (NB: he was a

geneticist.)

Bhurrhus Frederic Skinner (1904-90), American psychologist.
The real question is not whether machines think but whether

men do.
6. Can you outline the trend in the development of robots and

machines in general?
7. What kind of robot would you create if you could?
8. Do you think there is any danger posed by the development

of AI?

Richard Dawkins (1941- ), English evolutionary biologist.
We are survival machines, robot vehicles blindly programmed

to preserve the selfish molecules known as genes. This is a truth
which still fills me with astonishment.

It is raining DNA outside.
DNA neither cares nor knows. DNA just is. And we dance to

its music.
1. Try to explain the second quotation.
2. Do Dawkins’s words eliminate the idea of the soul?
3. Can we say that evil things are inevitable as everything is

determined by genes?
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XI. The Planiverse Project:
Then and Now

A.K. Dewdney, The Mathematical Intelligencer, vol. 22, number
1, Winter 2000, pp. 46-51.

Is a two-dimensional universe possible, at least in principle?
What laws of physics might work in such a universe? Would life be
possible? It was while pondering such imponderables one steamy
summer afternoon in 1980 that I came to the sudden conclusion
that, whether or not such a place exists, it would be possible
to conduct a gedanken experiment on a grand scale. It was all
a question of starting somewhat mathematically. With the right
basic assumptions (which would function like axioms), what logical
consequences might emerge?

Perhaps the heat was getting to me. I pictured my toy universe
as a balloon with an infinitesimal (that is to say, zero-thickness)
skin. Within this skin, a space like ours but with one dimension
less, there might be planets and stars, but they would have to be
disks of two-dimensional matter. In laying out the basic picture
I followed informal principles of simplicity and similarity. Other
things being equal, a feature in the planiverse should be as much
like its counterpart in our universe as possible, but not at the cost
of simplicity within the two-dimensional realm. The simplest two-
dimensional analog of a solid sphere is a disk.

What sort of orbits would the planets follow? In our own
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universe, Newtonian mechanics takes its particular form from
the inverse-square law of attraction. A planet circling a star, for
example, “feels” an attraction to that star which varies inversely
with the square of the distance between the two objects. The same
reason in the planiverse leads to a different conclusion. The amount
of light that falls on a linear meter at a distance 2x from a star is
one-half the light that reaches the square at a distance x from the
star. (see Figure 1); correspondingly, attraction is proportional to
the inverse first power of the distance.

The resulting trajectory is not a conic section, but a wildly
weaving orbit, as in Figure 2.

The figure resembles a production of that well-known toy, the
spirograph, in which gears laid on a sheet of paper roll around
each other. A pencil inserted in a hole in one of the gears might
trace such a figure. Are the two-dimensional orbits spirograph
figures? Probably not. They look like epicycles, the paths that
early astronomers thought might explain the looping orbits of
Mars and Jupiter in an Earth-centered system! (It is tempting to
conclude that what goes around comes around.)

Encouraged by such speculations, I begin to develop the
impression that such a universe might actually exist. It would be
completely invisible to us three-dimensional beings, wherever it
might be. But places, even imaginary ones, need names. What
could a two-dimensional universe be, but the Planiverse?
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In a fit of scientific irresponsibility I sent a letter to Martin
Gardner, then author of the Mathematical Games column for
Scientific American magazine. I included several speculations,
including the drawing of a two-dimensional fish shown in Figure
Three below.

Gardner wrote back, saying that he not only found the
planiverse a delightful place, he would devote a forthcoming
column to it. His column, which appeared in July, 1980, lifted our
speculations about two-dimensional science and technology to a
new level by bringing it to the attention of a much wider public.
Among those who read Gardner’s column were not only scientists
and technologists, but average readers with novel and startling
contributions of their own.

I left for a sabbatical at Oxford that summer, hoping to work
on the theory of computation and hoping also to get away from the
planiverse project, which was claiming more and more of my time.
I stayed in an abbey in the village of Wytham, near Oxford. There
was leisure not only to work on the logical design for an entirely
new way to compute things, but the opportunity to work on the
Planiverse Project, a paper symposium with colleague Richard
Lapidus, a physicist at the Stevens Institute of Technology in
New Jersey. Our symposium had contributions from around the
world on everything from two-dimensional chemistry and physics
to planetary theory and cosmology. There was, moreover, a section
devoted to technology, wherein the only feasible two-dimensional
car ever designed appeared for the first time. It had no wheels,
but was surrounded by something like a tank tread that ran on
disk-bearings. The occupants got in and out of the vehicle by
unhooking the tread.

The Planiverse Project was now proceeding at a satisfying rate.
I assumed that within a few years it would die away to nothing.
We would have had our fun, no harm done.

But a press release, written by a journalist at my home
institution in the fall of 1981, changed all that. Wire services
picked it up with the glee reserved for UFO reports and escaped
lions. There followed a rush of magazine and newspaper articles,
as well as television stories publicizing our two-dimensional world.
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In particular, a piece in Newsweek magazine caught the attention
of publishers.

In the midst of a series of papers on programming logic, I
was suddenly face to face with a big writing job. There were
contracts with Poseidon Press (Simon & Schuster) in the US,
with Pan/Picador in England, and with McClelland & Stewart in
Canada. I viewed these new responsibilities with irritation. It was
assuredly fun to think about the planiverse, but my research came
first. And was I not in danger of being regarded as a nut-case?
The media were no help. One interviewer asked, “So, Professor
Dewdney. Are you saying the Earth is flat after all?” (He was
serious!)

The writing job, as I finally came to view it, would have to
weave together all the scientific and technical elements that had
emerged from the Planiverse Project. But a compendium of these
speculations, no matter how wild or entertaining, would surely
prove a dry read. It would have to be a work of fiction, set in
the planiverse itself. There would be a planet called Arde, a disc of
matter circling a star called Shems. There would be a hero named
Yendred (almost my name backwards) and his quest for the third
dimension or, at least, a spiritual version of it. Yendred is convinced
that the answer to his quest lies on the high plateau of Arde’s lone
continent (a requirement of two-dimensional plate tectonics).

All the elements of our earlier speculations now fell more or less
into place. Think for a moment of even the humblest respects in
which a two-dimensional existence on the “surface” of Arde might
differ from our own.

The Jordan curve theorem’s implications for Arde were
profound. Closed curves lurked everywhere.

Consider, for example, Ardean soft, a mechanical mixture
of two-dimensional grains and pebbles in which any pocket
of water finds itself permanently trapped within the closed
circle of surrounding stones. The water cannot percolate, as our
groundwater does, up or down. It is trapped, at least until the
soil is mechanically disturbed. Consider also the simple matter of
Yendred attempting to lift a two-dimensional plank on the Ardean
surface. The plank, the ground, and Yendred himself would form a
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simple closed curve, and the air trapped inside the enclosed space
would become increasingly rarefied. The plank would seem to get
heavier and heavier. Perhaps readers can imagine themselves to be
Ardeans lifting such a plank. If you were Yendred, what technique
would you adopt to make it easier?

But for every disadvantage of life in two dimensions, there seems
to be an equal and opposite advantage. Bags and balloons are
trivial to make–from single pieces of string! Yendred’s father, who
takes him fishing near the beginning of the book, never has trouble
with tangled lines, for knots in two-space are impossible. Moreover,
sailing requires nothing more than a mast!

Yendred sets out on his quest shortly after the fishing trip with
his father. His home, like all Ardean homes, is underground. The
surface of Arde must be left as pristine as possible. There are
travelling plants and periodic rains which make temporary rivers,
basically floods. Any surface structure would either disrupt the
delicate one-dimensional ecology or be swept away, in any case. A
simple pole stuck in the ground would become a dam which could
never withstand the force of kilometers of water that would rapidly
build up behind it.

In the Ardean cities which Yendred must walk through (or over)
on his travels to the high plateau, we encounter the acme of two-
dimensional infrastructure. There is no skyline, only the typical
Ardean surface periodically marred by traffic pits. If an eastbound
Ardean should happen to encounter a westbound colleague, one of
them must lie down and let the other walk over him/her. Elaborate
rules of etiquette dictate who must lie down and who proceed,
but in an urban context there is no time for niceties. Whenever
a westbound group of Ardeans encounters a west-pit, they descend
the stairs, hook up an overhead cable and walt. At the sound of a
traffic gong, an eastbound group marches across the cable. What
would be a tightrope act in our world amounts to little more than
a springy walk in two dimensions for the eastbounders. West-pits
and east-pits alternate so that neither direction has an advantage
over the other.

From a privileged view outside the Planiverse, the “skyline” of
an Ardean city resembles an inverted Earth-city skyline. Yendred
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passes over numerous houses, apartment buildings, and factories,
marked only by the exit or entrance of fellow citizens bent on private
tasks like so many two-dimensional ants. Overhead pass delivery
balloons, each with its cargo of packages. Balloon drivers adjust to
near-neutral buoyancy, then take great hops over their fellows.

Access to underground structures is managed by swingstairs.
Although some of the larger structural beams are held together by
pegs, the fastener of choice is glue. Wires (yes, the Ardeans have
electricity) run only short distances, from batteries to appliances.
Electrical distribution is out of the question since power lines would
trap everyone within their homes. Reading by the feeble glow of a
battery-powered lamp, an Ardean might reach for his favorite book,
reading text that resembles Morse Code, one line per page. This
demands a highly concentrated prose style that is more suggestive
than comprehensive.

The population of Arde is not great. Only a few thousand
individuals inhabit its lone continent. Consequently, the Ardeans
have no great demand for power machines, the steam engine
sufficing for most needs, such as elevators and factories. Readers
might be able to figure out the operation of an Ardean steam
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engine from the accompanying illustration alone.
A boiler converts water into steam, and when a valve opens at

the top of the boiler, the steam drives a piston to the right. However,
this very motion engages a series of cams that close the valve.
The steam then enters a reservoir above the piston and escapes
when the piston completes its travel to the head of the “cylinder.”
Interestingly, almost any two-dimensional machine can also be built
in three dimensions. It must be given some thickness, of course, and
it must also be enclosed between two parallel plates to simulate the
restriction of no sideways movement. I have often wondered whether
we could build a car with a one-inch thick steam engine mounted
underneath. Think of the additional room that would provide!

Ardean technology is a strange mixture of advanced and
primitive machines. Although steam engines are the main power
source, rocket planes travel from city to city, while space satellites
orbit overhead. It is absurdly easy to make space stations airtight.
Any structure that contains at least one simple closed curve is
automatically airtight.

And of course, there are computers! These operate on the same
binary plinciples (0 and 1) as our own do. Ardean technologists
had a difficult time developing the appropriate circuits, however,
owing to the impossibility of getting wires to cross each other.
One brilliant engineer finally hit on the idea of a “logic crossover.”
Symbolically rendered below, this circuit consists of three exclusive-
or gates, each transmitting a logic 1 signal if and only if exactly one
input is a 1.

No matter what combination of zeros or ones enter this circuit
along the wires labelled x and y, the same signals leave the circuit
along the wires bearing these labels. Readers may readily satisfy
themselves that if x and y both carry a zero (or one), for example,
then both output lines will also carry this signal. But if x is one
and y is zero, the middle gate will output a one which will cancel
the x-signal in the upper gate and combine with the zero on the
y-input in the lower gate to produce a one.

Fun though technology may be, it isn’t until he visits the
Punizlan Institute of Technology (PIT) that Yendred encounters
the deep scientific ideas of his time. Scientists at PIT have
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developed a periodic table of the elements based on the theory that
while just two electrons can occupy the first shell of a planiversal
atom, up to six can occupy the second shell. We have labelled the
planiversal elements with the symbols of the elements from our
own universe which they most resemble.

Strangely, the planiversal elements quickly run out, owing to
the instability of very large planiversal atoms. In the planiverse,
one simply cannot pack as many neutrons and protons into a small
space as one can in our universe. Consequently, nuclear forces (other
things being equal) must act across larger distances and the nuclear
components are rather less tightly bound. Quite possibly, there is
a lot more radioactivity in the planiverse than in our own.

Other strange features of the planiverse include rather low
melting points and the strange behaviour of sound waves. Low
melting points might militate against the possibility of life, except
that chemical reactions proceed at lower temperatures, in any
event. Sound waves travel much farther and have a very strange
property first deduced by Earth scientists some time ago. If one
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sounds a note on Arde, the sound wave alters as it travels. A sharp
attack smears out in time, so that a single note of C, for example,
is heard at a distance as a glissando rising from some lower pitch
and asymptotic to C.

Cosmologically speaking, Ardean scientists have much to
ponder. Like us, they wonder if their universe is closed like a
balloon (we say it is) or open like a saddle-shaped space. It is
apparently expanding, and the balloon analogy, so often used to
illustrate how our own universe is apparently expanding, can be
taken quite literally. A deeper question concerns the orientability
of the planiverse. Perhaps it is really a projective plane, so that
Yendred, travelling by rocket across the planiverse, might return
to find that everyone has reversed their handedness and all Ardean
writing appears backward.

As for space travel, another problem awaits the rocket voyager.
There is no escape velocity in the planiverse. The amount of work
required to escape the gravitational field of an isolated planet is
infinite! (Try integrating 1/x from 1 to infinity.) However, if one
can travel far enough to fall under the gravitational influence of
some other body, the infinite escape velocity no longer matters.

The Planiverse Project had the most fun designing two-
dimensional life forms. Readers who turn back to the picture
of the fish (Figure 3) will find a creature with a well-developed
exoskeleton, like an insect, and with a rudimentary endoskeleton,
as well. The key anatomical component in any two-dimensional life
form is the zipper organ, two strips of interdigitating muscle that
meet to form a seam. Just inside the fish’s bony jaws, for example,
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the muscles which crush and chew the prey also part to admit
its fragments into a digestive pouch. Because portions of the two
muscles are always in contact, structural integrity is maintained.
The fragments are enclosed in a pocket that travels along the seam
from front to back.

Yendred, after many adventures, finally reaches the high plateau
and meets the mysterious Drabk, an Ardean who has developed the
ability to leave the planiverse entirely and move “alongside” it, so
to speak. Since The Planiverse is about to re-appear, I will not
give the plot away, but I had better mention the deus ex machina
that makes it all possible: in the book a class project results in a
program called 2DWORLD that simulates a two-dimensional world,
including a disk-shaped planet the students call Astria. Imagine the
student’s surprise when 2DWORLD turns out to be a sophisticated
communication device which, by a Theory of Lockstep, begins to
transit images of an actual two-dimensional universe, including a
planet called Arde and a being called Yendred!

When The Planiverse first appeared 16 years ago, it caught more
than a few readers off guard. The line between willing suspension
of disbelief and innocent acceptance, if it exists at all, is a thin
one. There were those who wanted to believe (despite the tongue-
in-cheek subtext) that we had actually made contact with a two-
dimensional world called Arde.

It is tempting to imagine that those who believed, as well as
those who suspended disbelief, did so because of the persuasive
consistency in the cosmology and physics of this infinitesimally thin
universe, and in its bizarre but oddly workable organisms. This was
not just your run-of-the-mill science fiction universe fashioned out
of the whole-cloth of wish-driven imagination. The planiverse is a
weirder place than that precisely because so much of it was worked
out in the Planiverse Project. Reality, even the pseudo-reality of
such a place, is invariably stranger than anything we merely dream
up.

Other Attempts at Two-Dimensional Universes
The Planiverse has had a long evolutionary history, marked

by previous books on two-dimensional worlds. The first of these
was Flatland, written in 1884 by Edwin A. Abbott, an English
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clergyman. Some years later, in 1907, Charles Hinton, an American
logician, wrote An Episode of Flatland, which reorganised Abbott’s
tabletop world into the somewhat more logical disk planet that
he called Astria. Much later, in 1965, Dionys Burger, a Dutch
physicist, published Sphereland, which attempted to reconcile
Abbott’s and Hinton’s worlds and then to use the resulting
two-dimensional universe to illustrate the curvature of space.

For all their charm, these books have various shortcomings.
Abbott made no attempt to endow his universe with coherent
physics. His beings float about in two-space with no apparent
mode of propulsion. Being geometrical figures, they have no
biology at all. Hinton’s universe is rather more like the planiverse,
his planet being a disk. But Hinton, immersed in a sort of
socialist Utopian fantasy, keeps forgetting the restrictions of his
characters’ two-dimensionality, seating his characters “side by side”
at a banquet, for example. Berger attempts to reconcile the two
previous universes, but he is really after just an expository vehicle
to illustrate various ideas about space and physics.

Exercises

1. Specify the italicized words below and translate the sentences
into Russian:

1) Is a two-dimensional universe possible, at least in principle?
What laws of physics might work in such a universe? Would life be
possible? It was while pondering such imponderables one steamy
summer afternoon in 1980 that I came to the sudden conclusion
that, whether or not such a place exists, it would be possible to
conduct a gedanken experiment on a grand scale. It was all a
question of starting somewhat mathematically. With the right
basic assumptions (which would function like axioms), what logical
consequences might emerge?

2) Within this skin, a space like ours but with one dimension
less, there might be planets and stars, but they would have to be
disks of two-dimensional matter.

3) Other things being equal, a feature in the planiverse should
be as much like its counterpart in our universe as possible, but not
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at the cost of simplicity within the two-dimensional realm.
4) The resulting trajectory is not a conic section, but a wildly

weaving orbit, as in Figure 2.
5) Encouraged by such speculations, I begin to develop the

impression that such a universe might actually exist. It would be
completely invisible to us three-dimensional beings, wherever it
might be. But places, even imaginary ones, need names. What could
a two-dimensional universe be, but the Planiverse?

6) The occupants got in and out of the vehicle by unhooking the
tread.

7) Consequently, the Ardeans have no great demand for power
machines, the steam engine sufficing for most needs, such as
elevators and factories.

8) However, this very motion engages a series of cams that close
the valve.

9) Consequently, nuclear forces (other things being equal) must
act across larger distances and the nuclear components are rather
less tightly bound.

2. What law of physics does the following sentence remind you
of?

“But for every disadvantage of life in two dimensions, there
seems to be an equal and opposite advantage.”

3. Give the Russian equivalents to the following English terms.
Use your English-English dictionary to check the pronunciation.

Dimension, realm, a solid sphere, a disk, infinitesimal,
Newtonian mechanics, the inverse-square law of attraction, a
figure, distance, a trajectory, a conic section, a closed curve/
circle, a knot, two-space, buoyancy, a melting point, a sound
wave, a projective plane, escape velocity, a gravitational field,
infinite/finite.

4. Add the missing letters to complete the words below. Use your
dictionary to check your answers, if necessary.

Two-dimen...ional, univer...e, ph...sics, exp...r...ment, re...lm,
prin...iple, simpli...ity, mec...anics, inver...e, squ...re, re...emble,
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fig...re, sab...atical, ent...rely, colle...gue, fe...sible, plan...tary,
perman...ntly, s...rrounding, pr...ceed, s...ffice, bin...ry, feat...re,
as...mptotic, accept...nce, suspen...ion.

5. What are the plural forms of the following nouns? Use your
dictionary, if necessary.

Compendium, formula, medium, symposium, nucleus, radius.

6. Find the following phrasal verbs in the text and try to guess
their meaning.

lay out
give away
turn out
run out
figure out
sweep away
set out
get away

Now use them to complete the sentences below:
1.We ... ... to conduct the experiment as soon as we got the

material. 2. He ... ... his papers and explained the conditions of
the agreement. 3. We are ... ... of time. 4. Once you have made
an outstanding contribution, it is next to impossible to ... ... from
public attention. 5. It is easy to ... ... the results of the experiment.
6. While working on the proof of Fermat’s Last theorem A.Wiles
did not of ... ... his secret to the colleagues. 7. Imaginary numbers ...
... to be extremely useful in the solving of the equations that could
not be solved previously. 8 The tsunami ... ... whole cities lying on
the coast. 9. There’s no ... ... from it.

7. Explain the use of the articles in the following sentences:
1) Within this skin, a space like ours but with one dimension

less, there might be planets and stars, but they would have to be
disks of two-dimensional matter. 2) Other things being equal, a
feature in the planiverse should be as much like its counterpart in
our universe as possible, but not at the cost of simplicity within
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the two-dimensional realm. 3) A planet circling a star, for example,
“feels” an attraction to that star which varies inversely with the
square of the distance between the two objects. The same reason
in the planiverse leads to a different conclusion. The amount of
light that falls on a linear meter at a distance 2x from a star is
one-half the light that reaches the square at a distance x from the
star; correspondingly, attraction is proportional to the inverse first
power of the distance.

8. Read through the article once again and choose the word
combinations and phrases that may help you describe the geometric
and mechanical properties of the author’s planiverse. Now write
a summary of the article outlining the difference between the
geometric and mechanical properties of the planiverse and those
of our universe. Remember to use linking devices to make your
summary coherent.

NB! You have come across a most useful linking phrase in the
article, namely cosmologically speaking. It can be mathematically/
geometrically/ ... speaking. Try and use it in your own piece of
writing.

9. Read the quotations below. Answer the questions.
John Desmond Bernal (1901-71), Irish physicist and x-ray

crystallographer.
The beauty of life is, therefore, geometrical beauty of a type

that Plato would have much appreciated.
1. Is nature beautiful in the sense Bernal understood it?
Godfrey Harold Hardy (1877-1947), British mathematician.
The mathematician’s pattern, like the painter’s or the poet’s,

must be beautiful; the ideas, like the colours or the words, must fit
together in a harmonious way. Beauty is the first test; there is no
permanent place in the world for ugly mathematics.

2. Could you give examples of ugly mathematics? Beautiful
mathematics?

3. Is it really necessary for mathematics to be beautiful?
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XII. The Foundations of
Geometry and the
History of Geometry

Jeremy Gray, The Mathematical Intelligencer, Vol. 20, Number
2, Spring 1998, p. 54.

The Foundations of Geometry and the History of
Geometry

When historians of mathematics seek to explore the work of
another mathematical culture, they naturally draw on their own
experience and that of the mathematicians around them. This
approach brings insights no careful reproduction of the texts can
manage, but it brings the risk of misreading too. The celebrated
example of non-Euclidean geometry, one of the most actively
discussed topics in 19th-century mathematics, is a case in point.
Indeed, the early years of the axiomatisation of geometry produced
a philosophy of geometry that had a marked effect on the writing
of the history of mathematics at the time.

It is usual to suggest that Hillbert’s Grundlagen der Geometrie,
first edition 1899, marks the start of the move towards axiomatising
mathematics, or to be more precise, towards giving formal,
“meaningless” axiom systems as the basis of each mathematical
discipline and eventually of all mathematics (see Kline, or Toepell,
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who also quotes Hurwitz to this effect in 1903). This enterprise,
which is also taken to expire with Gödel’s work in the 1930s, is
often referred to as Hilbert’s formalist programme. The bulk of
Hilbert’s work on it, a few forays aside, is concentrated in the
1920s and deals with difficult questions about the relation of
mathematics to logic. On this view, the importance of the work
on the foundations of geometry is that it prefigures the later work,
and, it is sometimes suggested, inspired similar treatments of other
topics – group theory is often mentioned, along with Zermelo’s
axiomatization of set theory (see Moore) and Steinitz’s theory of
fields. It is often observed that the Grundlagen der Geometrie ran
to 12 editions, changing its nature considerably over the years as
several appendices were added, and that it was translated into
several languages – proof of the esteem in which it was held.

There are a number of problems with this view. The first edition
does not fit the bill very comfortably: it is not about Euclidean
geometry but about various non-Archimedean geometries, presented
in the form of five families of axioms with particular attention
to the question of what underlying continuum is presupposed.
Only in the second edition are non-Euclidean geometry and
the independence of the parallel postulate discussed. There are
problems with the quality of the argument all the way up to
the 8th edition, the first to be published after Hilbert’s death in
1943. The edition that was translated into English was the second;
the better-known second English translation corresponds to the
10th German edition. The source of the most rigorous critiques
of Hilbert’s work was Freudenthal, who also wrote one of the few
good historical accounts of it, and it is with the history that I shall
be most concerned.

I shall take history here in two senses: I want to look, first,
at the early years of the axiomatisations of geometry; second, at
the effect this philosophy of geometry had on the writing of the
history of mathematics at the time. These are connected, because
the historians of mathematics (and it was a golden age for the
history of mathematics) were professional mathematicians working
in good mathematics departments.

The awkward fact, which Freudenthal pointed out, is that
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around 1900 the axiomatisation of geometry is more an Italian than
a Germany story; Kline’s account concurs. The story does start
in Germany: Moritz Pasch’s Vorlesungen uber neuere Geometrie
is the first book in which a thorough reworking of geometry is
proposed. He sought to formulate rigorously every fact about plane
projective geometry, starting with undefined or primitive concept of
the straight line segment between two points. Results or properties
about segments he felt necessary to assume without proof he called
Grundsatze. All Grundsatze were, he said immediately grounded
in observation, and he cited Helmholtz’s paper “On the origin
and significance of the geometrical axioms” at this point. Results
he could deduce from the Grundsatze he called Lehrsatze. There
were 8 Grundsatze needed to base the theory of line segments, of
which the first is “there is always a unique segment joining any
two points.” In general, Grundsatze should be laid down until
the mathematician could henceforth reason logically and without
further appeal to sense perceptions. The rest of the book is devoted
to showing that that can be done.

Thereafter, the study of geometry from an axiomatic point of
view was taken up most eagerly in Italy. One of the tricky topics,
and one that most interested Hilbert, was the interdependence of
the Theorems. One source for this interest was in the delicate
business of sorting out projective geometry. A point D is called the
harmonic conjugate of B with respect to A and C if the 4 points
are collinear and a complete quadrilateral can be found such that
2 pairs of opposite sides pass through A and C and two diagonals
through B and D. Desargues’s Theorem was then used to prove the
uniqueness of the 4th harmonic point.

The fundamental Theorems of projective geometry are that
a projective correspondence between two lines is completely
determined when three distinct points on the one are mapped
onto the other, and that any correspondence between two lines
that preserves harmonic conjugates is a projective correspondence.
Similar statements about four points in the plane also hold.

Christian Wiener had been the first to note that the proof of
the first fundamental Theorem relies on the theorems of Desargues
and Pappus, but he did not prove it. The first to do so was Schur

129



[1889]. After this, Hilbert had shown in his Grundlagen, Chapter
6 that indeed the first 15 axioms do not imply Pappus’s Theorem.
As Desargues himself had observed, the proof of Desargues’s
Theorem is automatic in projective spaces of dimensions 3 (or
more), but in two dimensions it requires a special proof. Peano in
his [1894] gave a proof in the three-dimensional case, but refrained
from comment on the situation in two dimensions, which left the
matter unresolved (as van der Waerden’s [1986] confirms). Then
Hilbert in his Grundlagen [1899], with a further simplification by
Vahlen [1905] and most simply Moulton [1902], noted that one
can have a projective space satisfying the first 12 axioms and the
contradiction of Desargues’s Theorem may be false in the plane, a
rather shocking result! Even the notion of harmonic conjugate is
not as simple as it may seem. In his [1891] Fano noted, using the
example of the finite projective plane with 7 points and 7 lines,
that there need not be a harmonic conjugate at all, and using
the finite space with 15 points he noted that the existence of a
harmonic conjugate does not imply that A and C separate B and
D.

Building on this series of discoveries of novel, counter-intuitive
theorems in projective geometry, Italian mathematicians did
not constrain their projective geometry to the facts of everyday
experience. The significant novelty in Mario Pieri’s work, which
marks it out from Pasch’s, is the complete abandonment of any
intention to formalize what is given in experience. Instead, as
he wrote in [1895], he treated projective geometry “in a purely
deductive and abstract manner,..., independent of any physical
interpretation of the premises.” Primitive terms, such as line
segments, “can be given any significance whatever, provided that
they are in harmony with the postulates which will be successively
introduced.” In Pieri’s presentation of plane projective geometry
(Pieri [1899] nineteen axioms were put forward (typically: any two
lines meet).

It was the Italian work rather than that of Hilbert which
travelled best, to the English-speaking world at least, as the
citations in A.N. Whitehead’s Cambidge Tract The axioms
of Projective Geometry (CUP Tract nr 4, 1906) show. One
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recalls that it was Peano’s example that inspired Russel to
take up mathematical logic. Whitehead’s axiomatisation, citing
the literature just described, used 12 axioms to describe the
projective plane. Axiom 13 allowed for a point outside the plane.
His treatment of order properties followed Pieri and his friend
Bertrand Russell’s Principles of Mathematics, Ch 24, 25. Then
Whitehead introduced Fano’s axiom, and soon had a system of
15, of which the last confined attention to 3-dimensional spaces. A
further four axioms allowed the introduction of coordinates. Pieri’s
ideas spread to France, where they were summarised by Couturat
in his Principles des mathematiques [1905] - a work openly inspired
by Russell’s work of the same name. In America Pieri’s system
of axioms for geometry was adopted by the mathematician J.W.
Young, who learned them from Couturat. In his book [1911] he
compared the systems of Hilbert, based on congruence, and Pieri,
based on motion (in the sense of 1-1 transformation); finding
the concept of congruence derived from it. Meanwhile, Veblen
had come independently to some of these ideas. Whitehead
particularly acknowledged the mimeographed notes of Veblen’s
Princeton lectures “On the foundations of geometry” published
by the University of Chicago in 1905. The later two-volume work
by Veblen and J.W. Young is even-handed in its attributions to
Hilbert and to the Italians. So it seems that in the early years of
the 20th century Italian ideas, such as Pieri’s, met with a greater
degree of acceptance than is commonly recognised today.

The question then arises why the Italians have been so forgotten.
The obvious answer is part of the correct one. Hilbert was Hilbert: a
powerful mathematician at the centre of the leading mathematical
department in the world. However transient his interest in the
foundations of geometry (and he had at most 4 PhD students in this
area, out of a total of 60 in his life), he lent the subject his potent
name. Thence the numerous editions and the translations. Add that
he survived the War, and in the 1920s took up the foundations of
mathematics, whereas Pieri died in 1913. Add that he was a lucid
writer, whereas Pieri wrote in the unnaturally constricted style of
his mentor, Peano. In this argot, as many words as possible of
a natural language were eliminated in favour of symbols. Points
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of emphasis, overviews of the argument, motivation - all could be
suppressed. Peano would sometimes write a paper in two halves,
the first in this logical manner, the second in Italian prose. My
subjective experience with such papers is that they are no easier or
harder to read than others, but a lot less exciting.

After the war Peano lectured more and more in this style, to
the distress of a Dean of the Faculty who came to investigate. It
is surely obvious which style will make friends. So marked was the
collapse of the Italian axiomatic geometers that Freudenthal calls
their triumph a Pyrrhic victory. For a discussion of the strengths
and weaknesses in logical terms of Peanian, as his mathematical
language was colloquially called, the reader is referred to Segre’s
essay and Zaitsev.

Axiomatising elementary geometry is a process that comes to
an end; it is, in more senses than one, a finite task, unless one is
to plunge into deep questions of mathematical logic. The Italians
pursued it as part of Peano’s programme to write mathematics
in completely unambiguous, logical fashion. Hilbert’s taste was
much broader, and that is also important. The Appendices to the
Grundlagen der Geometrie include his famous theorem that there is
no smooth isometric embedding of non-Euclidean two-dimensional
space into R3 . It does not belong to axiomatics, but it does belong
to mainstream mathematics, and I think that mathematicians
found that reassuring once the chill wind of axioms had had its
salutary effect. The rise of Gottingen, the diaspora after the Nazis,
and the contemporary decline of Italian geometry into a presumed
never-never land of hazy intuitions all preserved one tradition, and
covered up another. The folk memory was established - as history.

On one interesting matter the folk memory is strangely silent.
Just how much did Hilbert know of contemporary Italian work? In
his thorough study of Hilbert’s route to his Grundlagen (Toepell
[1986]) Toepell shows that although Hilbert did not read Italian
easily, he listed Peano’s book on the Grassmann calculus in
its German translation (Peano [1891]) as one of the books on the
axioms of geometry. Toepell therefore disagrees with Morris Kline’s
remark that Hilbert “did not know the work of the Italians” (quoted
from Kline [1972]). One might add that Italian geometers visited
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Gottingen, where Hilbert became a professor in 1895. Significantly,
Hilbert did not refer to Peano’s much more axiomatic work, Peano
[1889]. But it would be hard to argue that Hilbert could have
remained ignorant of Italian work after 1900. The International
Congress of Mathematics in Paris that year not only carried two
papers by Alessandro Padoa on foundational questions, one was
indeed devoted to expounding a new system of definitions for
Euclidean geometry (Padoa [1902]). Padoa there made reference to
much of the earlier Italian work, including Pieri’s. Moreover, the
Congress of Mathematicians came straight after the International
Congress of Philosophers, at which many papers were presented on
geometry, and several of the speakers attended both Congresses.
It is hard to imagine that Hilbert would not have been drawn into
conversation on the topic. He and the Italians may have begun
separately, but their interests now flowed together. A measure of
the degree to which Italian developments were not read may be
Poincare’s ignorance of them, to which Freudenthal drew attention
(Freudenthal [1962]).

Two reasons for the disparity between Hilbert and the
Italians may be worth nothing. When Hilbert spoke at the
International Congress of Mathematicians in Paris, he referred to
signs as memory aids. “Geometrical figures,” he said, “are signs or
mnemonic symbols of space intuition and are used as such by all
mathematicians.” Knowingly or not, this remark excluded Peano
and those like him, for whom signs were, precisely, formal symbols.
Then Hilbert went on to speak of the necessity of giving a rigorous
axiomatic investigation of the conceptual content of geometrical
signs and their combinations. This is a hint to the second difference
for Hilbert, the study of geometry in this new fashion led to
different kinds of arithmetic based on the addition or multiplication
of segments, not all of them equivalent to ordinary arithmetic,
the segment arithmetic for Cartesian geometry. This novelty held
out the prospect of illuminating geometry over any algebraic
number field, which was one of his prime purposes in pursuing
all this research. Only by compartmentilizing Hilbert’s work for
the modern reader can he be represented as so thorough-going a
formalist; the palm for that belongs to Italian mathemticians.
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I. The History of Geometry

In an important paper of 1939, Ernest Nagel argued that the
reformulation of geometry was an important source of modern
logic. The kernel of his insight was that while duality in projective
geometry puts points and lines in the plane on an exactly equal
footing, intuition must prefer points. So mathematicians were
forced away from intuition as the basis of geometry, and towards
formalism and thence logic. I would add that non-Euclidean
geometry promoted this tendency. It is the geometry that raises
the question of the nature of space, and with it the embarrassing
problem of explaining why mathematicians had been so wrong
about geometry for so long. Nagel’s example of the formalist
geometer was, of course, Hilbert - but in this he was unfair, in ways
that affect our understanding of Enriques. Indeed, as we shall see,
the insight of Nagel owes a log to the original work of Enriques.

If Enriques was the spokesman internationally for Italian
geometers, the one who most securely grasped the historical
task a former pupil of his, Roberto Bonola. His La geometria
non-Euclidea, which was published in 1906, grew out of an
earlier essay written for a collection of monographs on geometry
that Enriques had edited (Questioni riguardanti la geometria
elementare, Bologna, Zanichelli, 1900). It was translated into
German, and then into English by H.S. Carslaw, published by
Open Court in 1912, where it appeared with a short Introduction
by Enriques. The melancholy occasion of the preface was Bonola’s
death in 1911, at the age of 37. To produce the book, which is a
classic still worth reading and has even been used as the basis of a
course in geometry at Warwick (which is indirectly how I came to
history of mathematics, and so to be a student of David Fowler’s),
Bonola relied very sensibly on the work of the indefatigable
Friedrich Engel and Paul Stackel, who did so much to publish
and publicise the work of Bolyai and Lobachevskii. Naturally
Bonola, following the lead of Beltrami and Segre, also played up
the significance of Gerolamo Saccheri, the Italian mathematician
who had died in 1733 after discovering many results that now
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form the cornerstone of elementary non-Euclidean geometry. His
work had lapsed into almost complete obscurity, and Beltrami had
recently trumpeted its merits upon rediscovering it in 1889.

It was Engel, a former collaborator of Sophus Lie, and Stackel,
who also worked on editing the extensive Gauss Nachlass under
the direction of Felix Klein, who established the canonical version
of the story of non-Euclidean geometry, through their editions
of work by Lambert, Schweikart, and Taurinus as well as Bolyai
and Lobachevskii. Their book, Theorie der Parallellinien von
Euklid bis auf Gauss, 1895, is a generous collection of works by
Wallis, Saccheri, and the later writers through to Gauss, to which
they supplied a pertinent commentary. Engel himself translated
Lobachevskii’s two early and extensive Russian papers into German
(Lobachevskii [1899]), and they tried to find as much as they could
about the elusive figure of Janos Bolyai. Subsequent writers have
discovered a great many minor figures omitted by them, but with
the arguable exception of Legendre, no Western mathematician
has entered the Pantheon. One may conjecture that the reason is
the progressive interpretation that can be placed on all this work,
each author marking a significant advance until, while Schweikart
hesitates and Taurinus looks backwards, Gauss takes the bold step
into the non-Euclidean world. From such a perspective, Legendre’s
attempts are reactionary, and sometimes embarrassingly flawed.

What did Engel and Stackel have to say? The range of material
they presented is impressive; 19th-century German mathematicians
were well-educated scholars. The names fly by, however, as so many
precursors of the chosen few. Commentary amounts to 15-20%
of the book, the rest being biographical and bibliographical. The
thesis, if there is one, is concealed in the choice of authors.

Bonola’s work, by contrast, makes more of an argument. With
the Theorie der Parallellinien in print, he could content himself with
summaries of the original sources, and tell a historical story of his
own. He added a number of protagonists, expanded on the cryptic
references to Arabic writers, included Legendre, and went on past
Bolyai and Lobachevskii to Riemann. The first of five appendices
considered the connection between the parallel postulate and the
law of the lever; other appendices considered such topics as the
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independence of projective geometry from the parallel postulate,
and the impossibility of proving the parallel postulate.

The generic account in Bonola’s book of a mathematician’s
contribution goes like this. The mathematician’s definition of
a straight line and of a parallel line is given, or, if none was
supplied, one is uncovered from the use of the concepts. The
original argument is then presented in something close to its own
terms, and the fallacy, if any, is explained. So, when an argument
that would seem to show that spherical geometry cannot exist is
under discussion, Bonola shows how the postulate of Archimedes
or its consequence, the indefinite extendibility of the straight line,
has been tacitly invoked. And when Legendre produces a fallacious
argument using the postulate of Archimedes, Bonola also shows
how it could have been avoided, the better to explain that this was
not where Legendre erred.

From first to last, Bonola’s account of the origin and
development of non-Euclidean geometry is rooted in an analysis
of axioms: their equivalence and their independence. Indeed, an
Italian geometer, and a pupil of Enriques, writing between 1900
and 1911, would naturally see geometry as organised in this way. It
may be significant that Engel and Stackel were, if anything, more
in the orbit of Klein than Hilbert, and being 40 in 1901-2, had
several years of mature work behind them as differential geometers
and analysts. At all events, Bonola’s work is analytic where theirs
is descriptive. For Bonola, geometry is a matter of axioms, so the
history is a history of axioms.

It need not have been so. The history of non-Euclidean geometry
is open to other interpretations. Had it just been a question of
exhibiting an axiom system for something fairly geometrical, then
spherical geometry would have done. One needs, of course, to strike
out two of Euclid’s axioms: the parallel postulate and the indefinite
extendibility of the straight line. That this was not done suggests
that the ancients were not simply investigating axiom systems.
It suggests, what a considerable amount of other evidence also
suggests, that they were investigating something else: the geometry
of physical space. The ongoing question was not “is the parallel
postulate independent of the other axioms of geometry?”, but “is
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the parallel postulate independent of the other axioms of geometry
when giving an account of space?”. This is a different enterprise
from the much more overtly logical one in fashion around 1900.

There is another problem with Bonola’s analytic approach:
it is insensitive to the methods originally used. More precisely,
the old arguments are presented carefully and accurately, but
their significance is ignored. The book takes a dramatic turn
on page 76 (in its English edition), with the first appearance of
an analytic formula. Thereafter, the whole flavour switches from
Euclidean-style arguments about angles and lines to hyperbolic
trigonometry. We have entered a Chapter called “The Founders of
Non-Euclidean Geometry,” the early work of Gauss is behind us,
and that of Schweikart and Taurinus is upon us. It rapidly becomes
clear that this new trigonometry is the vital ingredient that made
the discovery possible. Indeed, it is well-known that the work of
Bolyai and Lobachevskii falls short of carrying logical conviction:
it is a coherent description, but based upon an assumption about
lines that was not rigorously defended. Their accounts are full of
a vivid analogy between hyperbolic and spherical trigonometry.
Elsewhere, in the early papers translated by Engel, Lobachevskii
gave his own way of deducing the trigonometry from an analysis
of geometry, but that is missing from Bonola’s account. It was
first clearly supplied by Beltrami, in his “Saggio” of 1868. But if
hyperbolic trigonometry is the vital ingredient, one might ask who
discovered it. The answer, as Bonola said in a footnote on page 82,
is Lambert. This should have caught Bonola’s attention, but he
ducked the issue, caught as he was his axiomatic paradigm.

If mathematicians from before Euclid to-shall we say - Poincare
were trying to describe space, then it would be natural for them to
use trigonometry or conventional (“Euclidean”) geometry. Axioms
would appear, as they usually do in geometry before the advent
of modern logic, as the undeniable truths they were taken to be,
mixed up with definitions, stated explicitly or implicitly as is the
way with statements of the obvious. Seen from this angle, which
was obscured around 1900, the question as issue was not the logical
status of the parallel postulate but something far more urgent: its
truth. Paradoxically, the new-found clarity 100 years ago about the
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nature of mathematical reasoning perhaps led Bonola to emphasise
the logic of the original arguments at the expense of their purpose.

II. End Note

There is much more to be said about Hilbert and axiomatisation.
In forth-coming ‘Years Ago’ column, Leo Corry examines Hilbert’s
axiomatisation of physics, specifically, radiation theory.

Exercises
1. Translate the italicized parts of the text. Pay attention to the

grammatical constructions.

2. Give the Russian equivalents of the following expressions:
to seek to explore; it is usual to suggest that; to be more

precise; to deal with; with particular attention to the question; to
correspond to; an awkward fact; to point out that; to lay down; to
be devoted to; a conjugate harmonic function; with respect to; a
counter-intuitive theorem; at least; the introduction of coordinates;
in this argot; to be referred to; to plunge into deep question; to
come straight after; to draw attention; to go on to speak; the
conceptual content; to force away; an embarrassing problem; to
lapse into obscurity; to establish the canonical version; to supply
pertinent commentary; the indefinite extendibility of the straight
line; a fallacious argument; to strike out; the ongoing question;
more precisely; a coherent description; the undeniable truth.

3. Translate the following:
a) Аксиома Паша. Пусть A,B,C — три точки, не лежащие

на одной прямой, и a — прямая в плоскости ABC этих трех
точек, не проходящая ни через одну из точек A,B,C; если при
этом прямая проходит через одну из точек отрезка AB, то она
должна пройти через одну из точек отрезка AC или через одну
из точек отрезка BC.

b) Дедукция — метод мышления, при котором частное по-
ложение логическим путём выводится из общего по правилам
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логики путем цепи умозаключений (рассуждений), звенья ко-
торой (высказывания) связаны отношением логического следо-
вания. Началом (посылками) дедукции являются аксиомы или
просто гипотезы, имеющие характер общих утверждений (“об-
щее”), а концом — следствия из посылок, теоремы (“частное”).
Если посылки дедукции истинны, то истинны и её следствия.
Дедукция — основное средство доказательства. Противополож-
но индукции. Пример дедуктивного умозаключения: Все люди
смертны. Сократ — человек. Следовательно, Сократ смертен.

c) Два ненулевых (не равных 0) вектора называются кол-
линеарными, если они лежат на параллельных прямых или
на одной прямой.

4. Translate the following from Russian into English using the
word combinations from the text:

1. Изучение истории математики непрофессионалом в ряде
случаев приводит к совершенно новым взглядам математиков
на традиционные для них основы этой науки.

2. Одной из наиболее обсуждаемых математиками тем в XIX
столетии была неевклидова геометрия.

3. Началом развития аксиоматики геометрии послужил фи-
лософский анализ истории ее развития.

4. Начальный этап перехода к аксиоматизации геометрии
обычно связывают с работой Гильберта “Основы геометрии”,
первый выпуск которой вышел в 1899 году.

5. Очень интересно понять, какое влияние работы Гильберта
по аксиоматизации геометрии оказали на понимание истории
развития геометрии и математики вообще.

6. Первой книгой, в которой было предложено полностью из-
менить взгляд на геометрию, можно считать «Лекции по новой
геометрии» немецкого математика Морица Паша.

7. Когда Мориц Паш приступил к строгому определению
всех основных положений проективной геометрии на плоскости,
он начал с понятия отрезка между двумя точками.

8. Теорема Дезарга является одной из основных теорем
проективной геометрии. Она формулируется так: если два
треугольника расположены на плоскости таким образом, что
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прямые, соединяющие соответствующие вершины треуголь-
ников, проходят через одну точку, то три точки, в которых
пересекаются продолжения трёх пар соответствующих сторон
треугольников, лежат на одной прямой.

9. По теореме Дезарга верно также и обратное: если два тре-
угольника расположены на плоскости таким образом, что три
точки, в которых пересекаются продолжения трёх пар соответ-
ствующих сторон треугольников, лежат на одной прямой, то
прямые, соединяющие соответствующие вершины треугольни-
ков, проходят через одну точку.

10. В своих ранних работах, переведенных на немецкий язык
Энгелем, Лобачевский разработал собственный метод дедукции
тригонометрии на основе геометрии.

5. Read the text “History of Geometry” again and write a
summary.

6. Read the quotations below and answer the questions.
Albert Einstein (1879-1955), German-born American

physicist.
As far as the laws of mathematics refer to reality, they are not

certain, they do not refer to reality.
1. On what grounds did Einstein make such a statement?
2. Give examples supporting his veiw.
3. Do you think there is any connection between these words and

the ideas of Gödel and those of Kant and any other philosophers?
Plato (427-347/8 BC), Greek philosopher.
Let no-one ignorant of geometry enter. (Said to have been

inscribed above the door of Plato’s Academy.)
4. Do you think Plato’s geometry was basically the same as

modern geometry?
5. Could you say what role geometry played in Plato’s

philosophy?
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XIII. Geometry Problems
Revisited

Alexander Shen, The Mathematical Intelligencer, Vol. 20,
Number 2, Spring 1998, pp. 36-40.

This column is devoted to mathematics for fun. What better
purpose is there for mathematics? To appear here, a theorem or
problem or remark does not need to be profound (but it is allowed
to be); it may not be directed only at specialists; it must attract
and fascinate. We welcome, encourage, and frequently publish
contributions from readers–either new notes, or replies to past
columns.

After publishing a column about two- and three- dimensional
geometric problems I got several letters about omissions in the
column. For example:

To The Editor: The Mathematical Entertainments section (in
Math. Intelligencer vol. 19, no. 3) tried to prove geometrically that
if we take three intersecting circles, the chords joining pairwise
intersections have a point in common. This is not quite true: the
three lines are always in a pencil, but they may be parallel rather
than concurrent. The intersecting circles

x2 + y2 + x+ 5y = 0

x2 + y2 + 2x+ 5y = 0
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x2 + y2 + 5y + 2 = 0,

for instance, have all three chords parallel to the y-axis.
William C. Waterhouse Department of Mathematics Penn State

University
I have to confess that that is not the only inaccuracy in the

column; a lot of details are omitted. One omission is of special
interest. In the chord problem it is possible that chords do not
intersect at all, only the lines to which they belong do intersect:

The proof I gave does not work for this case. Indeed, it
considered three spheres that have the given circles as diameter
sections, and took the point in three-dimensional space that
belongs to all three spheres. And now there is no such point.

However, there is a simple and rather general argument that
allows us to extend the result to this case almost free. Let us
consider the coordinates of the center points and the radii as
variables. Then the coefficients of the chords’ equations are
functions of these variables, and the claim (three lines intersect in
one point) becomes an equality. What functions are involved in
this equality? It is clear that they are analytic (in fact, algebraic)
functions. So if the equality is true on a set of configurations
that has a non-empty interior, the analytic continuation principle
guarantees that it is valid everywhere. And, of course, the set
of configurations with three intersecting circles has a non-empty
interior, so we are done.

The same remark can be applied to many other geometric
problems. As Vahe Y. Avedissian points out in his letter, the
situation arises in another problem mentioned in the same
column: about the triangle and perpendiculars. The proof used a
tetrahedron which does not exist in all cases. But again the set of
configurations where such a tetrahedron exists has a non- empty
interior and the claim is an equality between analytic functions, so
we can extend the result to all cases.

However, some caution is needed when we use this argument:
we should carefully check that all the functions are indeed analytic.
For example, the distance between a point and a line is not analytic
when the point crosses the line; it is only an absolute value of an
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analytic function. This is why we often need to consider oriented
lengths and angles to make a general statement that is true for all
configurations.

I. From a Special Case to a General Case

This way of reasoning (first prove something for a special case
and then use some meta-argument to extend the result to the
general case) is not limited to geometry. Here are some other nice
examples.

II. Hamilton-Cayley Theorem

Let A be a linear operator in n-dimensional linear space. Let
P (λ) = det(A−λ) be its characteristic polynomial. Then P (A) = 0.

To see why it is true (for matrices over C), we can use the
following argument. First consider the case when all the eigenvalues
of A are distinct complex numbers λ1, . . . , λn. Then the operator A
has an eigenbasis where the matrix is diagonal with λ1, . . . , λn on
the diagonal. In this basis the equation P (A) = (A − λ1) . . . (A −
λn) = 0 is evident, since the factors annihilate the coordinates one
by one.

Now we have to extend this result to the general case. Let us
consider elements of the matrix A (assuming some basis is fixed)
as variables. Then the coefficients of P are polynomials in these
variables, as are the entries of P (A). Therefore, the claim is just
an equality saying that some polynomial is equal to zero (actually
we have n2 equalities, not one). Since polynomials are continuous
functions and operators with distinct eigenvalues form a dense set,
this equality must be true for all operators. Q.e.d.

We can even make one step more and prove this theorem for
any field. Indeed, these n2 polynomials that form the equalities
have integer coefficients, and these coefficients do not depend on
the ground field. So if the equalities are true for complex numbers,
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it just means that coefficients are all zero, so the statement is true
for any field (or ring).

III. Quantifier Elimination

The term “meta-argument” reminds us of metamathematics and
mathematical logic. It is natural to ask logicians whether they can
justify some general scheme for this kind of reasoning. And indeed,
several schemes of this type are well known. Here is one of them,
the so-called quantifier elimination for algebraically closed fields of
characteristic 0 (Seidenberg-Tarski).

Consider formulas that contain variables (whose range is some
field), addition, multiplication, equality sign, logical operations
(and, or, not, if . . . then) and quantifiers (∀,∃). Examples of
formulas are

∃y(xy = 1)

and

∃x((x2 + px+ q = 0) and (x2 + rx+ s = 0)).

The first formula says that element x has a multiplicative
inverse; the second one says that two quadratic equations with
given coefficients have a common root.

The quantifier elimination theorem guarantees that any formula
is equivalent to a quantifier-free one. It is easy to see what are the
quantifier-free formulas in our two examples: the first formula is
equivalent to x 6= 0 (here inequalities come into play); the second
one is true if and only if the resultant polynomial

det

∣∣∣∣∣∣∣∣
1 p q 0
0 1 p q
1 r s 0
0 1 r s

∣∣∣∣∣∣∣∣
is equal to zero.
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By “equivalent” we mean that both formulas are simultaneously
true or false for any elements of any algebraically closed field of zero
characteristic. Both examples are formulas with free variables (x in
the first formula; p, q, r, s in the second one). For formulas without
free variables the equivalent quantifier-free formula should be a
logical constant true or false, and we get the following statement
(“completeness of the theory of algebraically closed fields of zero
characteristic”):

Any theorem that can be expressed as a formula and proved for
some algebraically dosed field of zero characteristic is automatically
true for all such fields.

To show that this theorem is not something trivial, let us see
why Hilbert’s Nullstellensatz is a corollary. One of the forms of the
Nullstellensatz says that if the system

P1(x1, . . . , xk) = 0

. . .

Pn(x1, . . . , xk) = 0

has no solution x1, . . . , xk ∈ C, then there exist polynomials
Q1, . . . , Qn such that P1Q1 + . . . + PnQn = 1. Let us assume
for simplicity that the coefficients of P ’s are integers. Then the
statement that the system has no solution can be expressed as a
formula. Being true over C, this formula should be true for any
algebraically closed field of zero characteristic (and therefore for
any field of characteristic zero, for a solution in some field remains
a solution in the algebraic closure). So it is enough to show that
if Q’s with the desired properties do not exist, then there is a
field where the system has a solution. But this is easy: the nonex-
istence of Q’s means that the ideal generated by P1, . . . , Pk is not
trivial, so it is contained in some maximal ideal I ⊂ C[x1, . . . , xk].
Then C[x1, . . . , xk]/I is a field where the system has solution
x1 = [x1], . . . , xk = [xk] ,where [x1] is the image of the polynomial
x1 under the factor-mapping C[x1, . . . , xk]→ C[x1, . . . , xk]/I .
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Exercises

1. Translate the italicized parts of the text. Pay attention to the
grammatical constructions.

2. Give the Russian equivalents of the following expressions:
to be devoted to; pairwise intersection; to have to confess; to

extend to; the analytic continuation principle; to point out; an
absolute value; this way of reasoning; q.e.d.; to depend on; the
quantifier elimination; the algebraically closed field; it is easy to
see; both formulas are simultaneously true or false; let us assume;
it is enough to show.

3. Translate the following:
a) Диагональная матрица - это квадратная матрица, все

элементы которой, стоящие вне главной диагонали, равны ну-
лю.

b) Теорема Гамильтона-Кэли. Любая квадратная матри-
ца удовлетворяет своему характеристическому уравнению: если
A - квадратная матрица и c(λ) - её характеристический много-
член, то c(A) = 0.

4. Translate the following sentences from Russian into English
using the word combinations from the text:

1) Для людей, не очень сведущих в математике, еще более
странной представляется математическая логика, с помощью
которой можно доказать самые невероятные утверждения.

2) Для того чтобы очаровать людей математикой, рассмот-
рим без подробных доказательств ряд теорем с использованием
математической логики.

3) Верно ли следующее утверждение: если взять три пере-
секающиеся окружности, каждые две из которых имеют пере-
секающиеся хорды, то все хорды имеют одну общую точку?

4) Справедливо ли следующее: если какое-то геометрическое
соотношение справедливо на ряде конфигураций (имеется не
пустое множество), то в соответствии с принципом аналитиче-
ского продолжения это соотношение справедливо всегда?
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5) Одним из примеров принципа доказательства математи-
ческих утверждений является теорема Гамильтона-Кэли.

6) Это равенство оказывается справедливым, потому что
рассмотренные функции и операторы с различными собствен-
ными значениями образуют плотное множество.

7) Одним из основных понятий математической логики яв-
ляется предикат - это высказывание, в которое можно подстав-
лять аргументы. Если аргумент один, то предикат выражает
свойство аргумента, если больше – то отношение между аргу-
ментами.

8) Примером предиката является высказывания: “Сократ –
человек”, “Платон – человек”. Оба эти высказывания выражают
свойство “быть человеком”. Таким образом, мы можем рассмат-
ривать предикат “быть человеком” и говорить, что он выполня-
ется для Сократа и Платона.

9) Квантор — общее название для логических операций,
ограничивающих область истинности какого-либо предиката и
создающих выказывание.

5. Read the text again and write a summary.

6. Read the quotations below and answer the questions.
Hermann Walther Nernst (1864-1941), German chemist.
On examinations: Knowledge is the death of research. Nernst’s

motto.
Karl Pearson (1857-1936), British statistician.
All great scientists have, in a certain sense, been great artists;

the man with no imagination may collect facts, but he cannot make
great discoveries.

Ernest Rutherford (Baron Rutherford of Nelson) (1871-
1937), New Zealand-born British physicist.

All science is either physics or stamp collecting.
1. Do you think Rutherford is prejudiced against other sciences?
2. Do you think there is any hostility between mathematics and

physics?
3. Name some scientists who were successful in both physics and

mathematics. What was the key to the success?
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4. Do you agree with Nernst?
5. Try to explain his words.
6. Nernst was a chemist, do you think his motto can be applied

to mathematics?
7. Don’t you think imagination in mathematics may be useful?

Where?
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XIV. U-Substitution

Colin Adams, The Mathematical Intelligencer, volume 23,
number 2, spring 2001, p. 29.

This is complete and utter humiliation in its nastiest form,
thought the coach, as he glanced up at the scoreboard. His team
was still in the single digits while their opponents were about to
break fifty. He looked down the bench at his demoralized team. It
was not a bright moment for the Valparaiso Variables. What had
the owner James Stewart been thinking when he moved the team
up to the big leagues? They weren’t in any way comparable to the
Indianapolis Integrals, the team that was currently scoring at will
as he watched from the sideline.

∫
eiπxdx stole the ball from hapless

z and effortlessly scored again. His players just couldn’t keep up.
And not that they needed it, but the Integrals had recently

signed
∫

1/(1 + x2)dx. Here was one of the most famous integrals
on the planet, with endorsement deals galore. You couldn’t turn
on your television without seeing

∫
1/(1 + x2)dx biting into a hot

dog, or hawking graphing calculators. He was scoring at will. The
Variables were scared of coming within 10 feet of him.

As the coach looked down his bench, all the players started down
at their feet, afraid to meet his eye. They didn’t want to be put into
the game just to be humiliated. All except that skinny kid tanu,
sitting at the end. That kid’s got guts, thought the coach. He’d
been hustling all semester. He had two left feet, but he wanted to
play so bad. And now he was looking at the coach with desperate
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hope in his eye. What the hell, thought the coach, this game is lost
anyway.

“Okay tan u you’re going in for x. You cover the big integral.”
Tan u leaped off the bench. The coach signaled the referee.

“I’m doing a u-subsitution,” he said. “I’m replacing x with tanu.”
The rest of the bench looked up, startled to hear the call. x

raced over to the sideline.
“What are you doing, coach? You’re subbing that skinny kid in

for me? Hey, I’m your top scorer. You can’t do this.”
“Sit down, x,” said the coach, as he threw him a towel.∫

1/(1 + x2)dx laughed when he saw the scrawny player that
was covering him.

“Hey look at this,” he said. “They did a u-substitution.” His
teammates guffawed.

As play resumed,
∫

1/(1+x2)dx came down the court fast, with
little tan u trailing behind. But as

∫
1/(1 + x2)dx made a move

to the right, tan u slipped to the inside. As everyone watched in
amazement, the 1 + x2 became 1 + tan2 u. A stunned second later,
1+tan2 u became sec2 u. The dx became sec2 udu. The crowd leapt
to its feet. The sec2 u’s cancelled, and all that was left of the mighty∫

1/(1 + x2)dx was
∫
du. The other integrals stood dumbfounded.

The coach was waving a towel over his head. The entire Variable
bench was up screaming. Do it, do it! The

∫
du became just u+C.

Pandemonium erupted all over the stadium.
“Okay, x, finish it off,” said the coach, grinning from ear to

ear. A sheepish x went back in for tan u, and the u + C became
arctanx+C. The building reverberated with cheers. The Variables
lifted scrawny tanu on their shoulders and paraded around the
court as the crowd chanted, “Tan u, tan u.” Fans mobbed them
from all sides. The Variables had won the game.

Later in the locker room, after all the reporters had come and
gone, and all the champagne had been swallowed or dumped on
heads, the coach gathered the team together.

“Well, I didn’t think we could do it, but thanks to tanu, we beat
the Indianapolis Integrals. And I want you to savor this victory. You
deserve it. But don’t get carried away with it, either. Next week
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we play the Pittsburgh PDE’s, and if you think the Integrals are
tough, wait until you try solving a PDE.”

Exercises

1. Specify the italicized words below and translate the sentences
into Russian:

1) Opening a copy of The Mathematical Intelligencer you may
ask yourself uneasily, “What is this anyway – a mathematical
journal or what?”

2) Relax. Breathe regularly. It’s mathematical, it’s a humor
column, and it may even be harmless.

3) You couldn’t turn on your television without seeing
∫

1/(1 +
x2)dx biting into a hot dog, or hawking graphing calculators.

4) This is complete and utter humiliation in its nastiest form,
thought the coach, as he glanced up at the scoreboard. His team
was still in the single digits while their opponents were about to
break fifty.

5) They weren’t in any way comparable to Indianopolis
Integrals, the team that was currently scoring at will as watched
from the sideline.

2. What meaning do the italicized verbal forms convey?
1) And not that they needed it, but the Integrals had recently

signed
∫

1/(1 + x2)dx.
2) That kid’s got guts, thought the coach. He’d been hustling all

semester.
3)
∫

1/(1 +x2)dx laughed when he saw the scrawny player that
was covering him.

4) Later in the locker room, after all the reporters had come
and gone, and all the champagne had been swallowed or dumped on
heads, the coach gathered the teams together.

5) What had the owner James Stewart been thinking when he
moved the team up to the big leagues?
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3. Find the following phrasal verbs in the text and try to guess
their meaning.

to be about
to go in for
to look up
to move up
to turn on

Now use them to complete the sentences below:
1. He ... ... to take the floor when the phone rang. 2. The lecturer

... ... from his notes as silence fell on the audience. 3. Some people

... ... ... team sports, while others prefer individual sports. 4. Could
you ... ... a bit? 5. I’ll ... ... the heating.

4. Give the English equivalents of the following Russian terms.
Make sure that you know how to spell them and how they are
abbreviated.

Переменная, интеграл, трансцендентное число, производ-
ная, фут, тангенс, арктангенс, котангенс, секущая.

5. Using your English-English dictionary, say what words the
following derive from and specify their suffixes and prefixes. Mind
the pronunciation.

Uneasily, mathematical, comparable, hapless, effortlessly,
referee, replace, mighty, sheepish, amazement, harmless, disorient-
ation, calculator, reverberate.

6. Add the missing letters to complete the words below. Use your
dictionary to check your answers, if necessary.

U...ter, jo...rnal, g...lore, desper...te, uneas...ly, substitu...ion,
fi...ty, leag...e, integr...l

7. For each group of sentences think of one word only which can
be used appropriately in all the three sentences.

1) There were 100 students in the lecture hall, at the very ... .
... rock music makes me feel irritated.

152



It is a ... interesting exhibition. You must certainly go and see
it.

2) He has an ... sense of hearing.
He was taken to hospital with ... appendicitis.
An ... angle is an angle that is less than 90 degrees.

3) It’s always better to look on the ... side of things.
He is always full of ... ideas.
It was a ... moment for the young musician.

4) In any ..., you are right.
First, we visited France and then we went to Italy. – No, it was

the other ... round.
Preparations are under ... for our conference in April.

5) Where there is a ... there is a way.
Candidates are not allowed to go out at ... during the exam.
With the best ... in the world he couldn’t become a linguist

simply because he had no knack for learning languages.

6) In the ... they found their way through the bushes.
There was an interesting episode at the ... of the book.
The students listened to the lecture until the very ....

8. Synonyms are words with roughly the same meaning. We say
roughly because it is hardly possible to find any two synonyms
that have exactly the same meaning: either there is a shade which
separates them or not all synonyms collocate with some word.

In the text you have come across several synonyms of the verb
‘surprise’. Below there is a note on how to use the verb and its
synonyms.

The note is borrowed from the website of the
Oxford Advanced Learners Dictionary
Startle, amaze, stun, astonish, take somebody aback,

astound
These words all mean to make somebody feel surprised.
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surprise to give somebody the feeling that you get when
something happens that you do not expect or do not understand,
or something that you do expect does not happen; to make
somebody feel surprised: The outcome didn’t surprise me at all.

startle to surprise somebody suddenly in a way that slightly
shocks or frightens them: Sorry, I didn’t mean to startle you. The
explosion startled the horse.

amaze to surprise somebody very much: Just the huge size of
the place amazed her.

stun (rather informal) (often in newspapers) to surprise or
shock somebody so much that they cannot think clearly or speak
astonish to surprise somebody very much: The news astonished
everyone.

amaze or astonish?
These two words have the same meaning and in most cases

you can use either. If you are talking about something that both
surprises you and makes you feel ashamed, use astonish : He was
astonished by his own stupidity.

take somebody aback [usually passive] (especially of
something negative) to surprise or shock somebody: We were
rather taken aback by her hostile reaction.

astound to surprise or shock somebody very much: His
arrogance astounded her.

It surprises somebody/startles somebody/amazes somebody/
stuns somebody/astonishes somebody/takes somebody aback/
astounds somebody

to surprise/startle/amaze/stun/astonish/astound somebody
that ...

to surprise/amaze somebody what/how...
to surprise/startle/amaze/stun/astonish/astound somebody to

know/find/learn/see/hear...
to be surprised/startled/stunned into (doing) something
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9. Read the quotations below. Answer the questions.
Max Born (1882-1970), German physicist.
To present a scientific subject in an attractive and stimulating

manner is an artistic task, similar to that of a novelist or even a
dramatic writer. The same holds for writing textbooks.

Francis Henry Compton Crick (1916-2004), British
molecular biologist.

There is no form of prose more difficult to understand and more
tedious to read than the average scientific paper.

1. What makes a good textbook?
2. What is the difference between a good book and a bad book?

Give examples.
3. Could you name some really good (bad) textbooks on

mathematics or mechanics? Do the other students agree with
you?

John Henry Newmann (1801-90), British cardinal and
theologian.

To discover and to teach are distinct functions; they are also
distinct gifts, and are not commonly found united in the same
person.

4. What made Newmann think so?
5. Why is it possible?
6. Do you think a person is unlikely to have both gifts?
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XV. The Surfaces of
Delaunay

James Eells, Mathematical Intelligencer, Volume 9, No. 1
(Winter 1987), pp. 53-57.

I. Background

In 1841 the astronomer/mathematician C. Delaunay isolated
a certain class of surfaces in Euclidean space, representations of
which he described explicitly. In an appendix to that paper, M.
Sturm characterized Delaunay’s surfaces variationally; indeed,
as the solutions to an isoperimetric problem in the calculus of
variations. That in turn revealed how those surfaces make their
appearance in gas dynamics; soap bubbles and stems of plants
provide simple examples. See Chapter V of the marvellous book [8]
by D’Arcy Thompson for an essay on the occurence and properties
of such surfaces in nature.

More than 130 years later E. Calabi pointed out to me that the
solutions to a certain pendulum problem of R. T. Smith could be
interpreted via the Gauss maps of Delaunay’s surfaces. And Eells
and Lemaire found that the Gauss map of one of those surfaces
produces a solution to an existence problem in algebraic/differential
topology.
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The purpose of this article is to retrace those steps in an
expository manner - as a revised version of [2].

II. Roulettes of a Conic

The first step is to derive the equations describing the trace of a
focus F of a non-degenerate conic l as K rolls along a straight line
in a plane. (Perhaps these derivations were better known a century
ago!) We examine various cases separately.

L IS A PARABOLA (SEE FIGURE 13-1) Here A is the vertex
of l. The line PK is tangent to l at the point K. The following
properties are elementary: 1. Correspondingly marked angles are
equal. 2. FP is orthogonal to PK.

Thus we obtain

FA = FP cos∠AFP = FP cos∠PFK

Now we change our viewpoint and think of the tangent line PK as
the axis – the x-axis – along which the parabola l rolls. We denote
the ordinate of F by y and observe that

cos∠PFK =
dx

ds

describes the rate of change of abscissa of F with respect to arc
length s; i.e.,

dx

ds
= α,

where α denotes the angle made by the tangent with the x-axis.
Thus setting c = FA, we obtain the differential equation

c = y
dx

ds
=

y√
1 + y2

, or y =

√
y2 − c2
c2

.

Its solution is the catenary

y =
c

2
(ex/c + e−x/c) = c coshx/c
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That equation describes the shape of a flexible inextensible free-
hanging cable – thereby explaining its name. In that context we can
obtain the equation of the catenary as the Euler-Lagrange equation
of the potential energy integral

P (y) =

∫ x1

x0

y

√
1 + y′2dx

subject to vatiations holding fixed the length integral∫ x1

x0

y

√
1 + y′2dx = L

Indeed, from general principles we are asked to find a real number
a and an extremal of the integral

J(y) =

∫ x1

x0

(

√
1 + y′2 + ay

√
1 + y′2)dx

Its Euler-Lagrange equation has first integral

y′ =

√
(1 + ay)2 − b2

b2
for b ∈ R

The equation of the catenary is derived from this, choosing suitable
normalizations. The curvature of l is measured by the amount of
turning of its tangent. That is expressed by the Gauss map of l into
the unit circle, given by x→ αx, where

cosαx =
dx

ds
=
c

y
.

The Gauss map of the roulette of the parabola is injective onto an
open semi-circle.

l IS AN ELLIPSE Here F and F ′ are the foci of l; the O is its
center. The line PKP ′ is tangent to l at K. Letting a and b denote
the length of the semi-axes of l, we obtain the following properties:

1. FK + F ′K = 2a > 0;
2. the pedal equation PF ∗ P ′F ′ = b2;
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3. the normal to the locus of F passes through K.
Again using PK as x-axis,

y

FK
= sin∠FKP = cos∠FTP =

dx

ds

y′

F ′K
= sin∠F ′KP ′ = cos∠F ′TP ′ =

dx

ds
.

From these we derive

y + y′ = 2a
dx

ds
, yy′ = b2,

so that
y2 − 2ay

dx

ds
+ b2 = 0.

By analyzing all cases and taking a ≤ b, we obtain

y2 ± 2ay
dx

ds
+ b2 = 0.

The solutions to that differential equation can be given explicitly in
terms of elliptic functions. The locus of either focus will be called
the undulary. Its Gauss map is given by x→ αx, where

cosαx = ∓y
2 + b2

2ay
.

It maps l onto a closed arc of the unit circle. There are two limiting
cases, which are perhaps best handled separately. When b→ a the
undulary degenerates to a straight line, the locus of the centre of a
circle rolling on a line. And where b → 0 the undulary becomes a
semi-circle centered on the x-axis.

l IS AN HYPERBOLA In analogy with the case of the ellipse,
we have 1. FK − F ′K ′ = 2a > 0. 2. PF − P ′F ′ = b2. Thus we
obtain the following differential equation for the locus of F , given
as a first integral of an Euler-Lagrange equation:

y2 ± 2ay
dx

ds
− b2 = 0.
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The loci of the two foci fit together to form the curve which we
shall call the nodary. Its Gauss map x→ αx is governed by

cosαx = ∓y
2 − b2

2ay
.

The Gauss map has no extreme points, and direct verification shows
that it is surjective. A roulette of a conic is a catenary, undulary,
nodary, a straight line parallel to the x-axis, or a semicircle centered
on the x-axis.

III. Surfaces of Revolution with Constant
Mean Curvature

Rotating each of the roulettes about its axis of rolling produces
five types of surfaces in Euclidean 3-space R3, called the surfaces
of Delaunay: the catenoids, unduloids, nodoids, the right circular
cylinders, and the spheres.

VARIATIONAL CHARACTERIZATION: We formulate the
following isoperimetric principle, for the unduloid and nodoid
(only minor technical changes being required for the other cases).
Consider graphs in R2 of non-negative functions

y : [x0, x1]→ R(≥ 0)

with fixed volume of revolution

V (y) = π

∫ x1

x0

y2dx;

and extremize their lateral area

A(y) = 2π

∫ x1

x0

y2ds

holding the endpoints fixed. By general principles of constraint
(under the heading of Lagrange’s method of multipliers for
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isoperimetric problems), we are led to the Euler-Lagrange equation
associated with the integral

F (y) = π

∫ x1

x0

(y2dx+ 2ay ds) = π

∫ x1

x0

(y2 + 2ay

√
1 + y′2dx).

Here a is a convenient real parameter. Its integrand f does not
involve x explicitly, so we obtain a first integral from

0 = y′(fy −
d

dx
fy′) =

d

dx
(f − y′fy′).

Thus f − y′fy′ = ±b2, where b is another real parameter.
Consequently,

y2 +
2ay√
1 + y′2

∓ b2 = 0.

But
1√

1 + y′2
=
dx

ds

so the extremal equation for our variational problem coincides with
that of the roulette of the ellipse or hyperbola.

GAUSS MAPS: In an analogy with the case of oriented curves
in the plane, we associate to any oriented surface M immersed
in R3 its Gauss map γ : M → S (the unit 2-sphere centered at
the origin in R3), defined by assigning to each point x ∈ M the
positive unit vector orthogonal to the oriented tangent plane to
M at x. Its differential dγ(x) can be interpreted as a symmetric
bilinear form on the tangent space TxM . Its eigenvalues λ1, λ2 are
well determined up to order. The symmetric functions Kx = λ1λ2
and Hx = (λ1λ2)/2 are called the curvature of M and the mean
curvature of the immersion at x, respectively. For instance,

1. the cylinder has K ≡ 0 and constant mean curvature H 6= 0;
2. the sphere of radius R has a constant curvature K = 1/R2

and constant mean curvature H = 1/R;
3. the catenoid has variable curvature K and mean curvature

H ≡ 0;
4-5. the unduloid and nodoid have variable curvature K and

constant mean curvature H 6= 0.
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These five surfaces were recognized by Plateau, using soap film
experiments.

Say that a surface of constant mean curvature in R3 is complete
if it is not part of a larger such surface. From Sturm’s variational
characterization, we obtain

DELAUNAY’S THEOREM: The complete immersed surfaces of
revolution in R3 with constant mean curvature are precisely those
obtained by rotating about their axes the roulettes of the conics.

Thus Delaunay’s surfaces are those surfaces of revolution M in
R3 which are maintained in equilibrium by the pressure of a field
of force which acts everywhere orthogonally to M .

IV. Harmonic Gauss Maps

An easy yet vitally important theorem of Ruh-Vilms states that:
A surface M immersed in R3 has constant mean curvature if

and only if its Gauss map γ : M → S satisfies the equation

∆γ = ||dγ||2γ,

where ∆ denotes the Laplacian of M with conformal structure
induced from that of R3, and vertical bars the Euclidean norm at
each point. Indeed, (1.4) is the condition for harmonicity of the
map γ — and is the Euler-Lagrange equation associated to the
energy (or action) integral

E(γ) =
1

2

∫
M

||dγ||2.

E is a conformal invariant of M .
SMITH’S MECHANICS: Motivated by certain mechanical

analogies, R. T. Smith found solutions to equation (1.4) as maps:
γ : R2 → S, as follows:

Think of points of R2 parametrized by angles (φ, θ), and use
spherical coordinates on the sphere S, as shown in Figure. If we
restrict our attention to maps γ of the special form

(φ, θ) = (eiθ sinα(φ), cosα(φ)),
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then the equation of harmonicity becomes the pendulum equation

α“ =
A

2
sin 2α. (4.3)

We assume that α(0) = π/2, so that the solution oscillates
symmetrically about π/2. Now a first integral of (4.3) is given by

α′ =

√
C −A cos2 α

2
.

Again, that has an explicit solution in terms of elliptic functions.
Furthermore, the associated map γ : R2 → S is doubly periodic,
factoring through the torus T = R2/Z2 to produce a map γ : T → S,
as desired. Incidentally, the integrand of E is

‖ dγ ‖2= α′2 +
A

2
sin2 α.

Calabi made the beautiful observation that Smith’s maps γ : T → S
are the Gauss maps of certain surfaces of Delaunay.

A HARMONIC REPRESENTATIVE IN A HOMOTOPY
CLASS: If we represent the torus T in the form T = R/aZ×R/2πZ
and use polar coordinates (r, θ) on the unit sphere S, then a map
from the cylinder to S of the form

r = Φ(x), θ = y

subject to the coordinates Φ(0) = 0,Φ(a) = π is harmonic if and
only if Φ satisfies the pendulum equation (4.3) with A = 1. There
are such solutions. Indeed, the Gauss map of the nodoid induces a
harmonic map of a Klein bottle γ : K → S. Furthermore, that map
is not deformable to a constant map.

Hopf’s classification theorem insures that the maps K → S are
partitioned by homotopy into just two classes. Thus the harmonic
map γ represents the non-trivial class.
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Exercises

1. In the text, translate the sentences italicized.

2. What key words and phrases would you use to speak about
roulettes of a conic?

3. See if you remember: in turn, with respect to, via, in terms
of, in analogy with, consequently, correspodingly, i.e., respectively,
incidentally.

4. Complete the expressions with a word which can combine with
the words given:

to obtain ... , to derive ... , to satisfy ... , the Euler-Lagrange ...,
the extremal ... coincides with solutions to ... .

5. Insert prepositions:
a solution ... a problem, to be tangent ... l ... the point k, to think

... smth, subject ... smth, to map smth ... smth, to degenerate ... a
straight line, to rotate smth ... its axis, a line parallel ... the x-axis,
... the heading of Lagrange’s method ... multipliers .. isoperimetric
problems, to be led ... smth, the positive unit vector orthogonal
... smth, as shown ... Figure 1, to restrict attention ... smth, to be
partitioned ... classes.

6. What are the plural forms of the following nouns? Use a
dictionary to help.

Focus, axis, pendulum, locus, abscissa.

7.Use your dictionary to check the pronunciation of eigenvalue.

8. What do you understand by the term nodary?

9. Give the English equivalents of:
1) мы полагаем, что
2) если мы представим тор T в форме
3) тогда и только тогда
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4) симметрично относительно π/2
5) скажем, что
6) мы получим
7) которые остаются в равновесии
8) сила, которая действует повсеместно
9) простая, но чрезвычайно важная теорема гласит, что
10) если отображение удовлетворяет уравнению
11) уравнение, имеющее отношение к
12) как следует из
13) как показано на рисунке
14) если мы сосредоточим наше внимание на
15) как требуется
16) уравнение маятника
17) следовательно
18) таким образом мы получим
19) непосредственная проверка показывает, что
20) прямая параллельная оси x

10. Read the quotations below and answer the questions.
Irving Langmuir (1881-1957), American chemist and

physicist.
A chemist who does not know mathematics is seriously

handicapped.
Arnold Sommerfeld (1868-1951), German physicist.
If you want to be a physicist, you must do three things - first,

study mathematics, second, study more mathematics, and third,
do the same.

Alfred NorthWhitehead (1861-1947), British mathematician
and philosopher.

All science as it grows toward perfection becomes mathematical
in its ideas.

1. Why does mathematics become increasingly important in
many fields nowadays?

2. Mathematics is employed by biology, psychology, linguistics,
etc. Could you give any examples of its applications?
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Napoleon Bonaparte (1769-1821), French emperor.
The advancement and perfection of mathematics are intimately

connected with the prosperity of the State.
3. What do you think made Napoleon say so?
4. Try to give examples supporting the quotation.

George-Louis Leclerc, Comte de Buffon (1707-88), French
naturalist and philosopher.

To be and to think are one and the same for us.
1. Do you agree with this statement?
2. Is this quotation similar to René Descartes’ “Cogito ergo

sum”?
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XVI. π is wrong!

Bob Palais, The Mathematical Intelligencer, volume 23, number
3, summer 2001, pp. 7-8.

I know it will be called blasphemy by some, but I believe
that π is wrong. For centuries π has recieved unlimited praise;
mathematicians have waxed rhapsodic about its mysteries, used it
as a symbol for mathematics societies and mathematics in general,
and built it into calculators and programming languages. Even
a movie has been named after it. (For a non-technical movie,
the mathematics was surprisingly good, except for the throwaway
question “Surely you’ve tried all of the 216-digit numbers?” At
one number per nanosecond, checking all 30-digit numbers would
take longer than the life of the universe!) I am not questioning
its irrationality, transcendence, or numerical calculation, but the
choice of the number on which we bestow a symbol conveying deep
geometric significance. The proper value, which does deserve all of
the reverence and adulation bestowed upon the current impostor, is
the number now unfortunately known as 2π.

I do not necessarily feel that π can or even should be changed
or replaced with an alternative (though I’ve by now recieved
some good suggestions!), but it is worthwhile to recognize the
repercussions of the error as a warning and a lesson in choosing
good notational conventions to communicate mathematical ideas.
I compare the problem to what would have occurred if Leonard
Euler had defined e to be .3678 . . . (the natural decay factor equal
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to 1
2.718...), in which case there would be just as many unfortunate

minus signs running around from that choice as there are factors
of 2 from π = 3.14 . . ..

The most significant consequence of the misdefinition of π is
for early geometry and trigonometry students who are told by
mathematicians that radian measure is more natural than degree
measure. In a sense it is, since a quarter of a circle is more naturally
measured by 1.57 . . . than by 90. Unfortunately, this beautiful idea
is sabotaged by the fact that π isn’t 6.28 . . ., which would make a
quarter of a circle or a quadrant equal to a quarter of π radians; a
third of a circle, a third of π radians, and so on. The opportunity
to impress students with a beautiful and natural simplification is
turned into an absurd exercise in memorization and dogma. An
enlightening analogy is to leave clocks the way they are but define
an hour to be 30 minutes. In that case, 15 minutes or a quarter of a
clock would indeed be called half an hour, just as a quarter of a circle
is half of π in mathematics! Even mathematically sophisticated
software packages prefer to use 90o to indicate a quarter-circle
rotation. We can’t really blame them for the fact that π is wrong.

Perhaps more convincing to mathematicians is the litany of
important theorems and formulas into which this ubiquitous factor
of 2 has crept and propagated: Cauchy’s integral formula and
Fourier series formulas all begin with 1

2π , Stirling’s approximation
and the Gaussian normal distribution both carry it, the Gauss-
Bonnet and Picard theorems have the mark of 2π. (Archimedes
showed that the area of the unit sphere is the area of the cylinder of
the same radius and height, or twice the circumference of the unit
circle: 4π = 2(2π).) The blight of factors of 2 even affects physics,
for example in Maxwell’s equations (Gauss’s law, Ampere’s law,
Coulomb’s constant) and Planck’s constant h

2π . Euler’s formula
should be eiπ = 1 (or eiπ/2 = −1, in which case it involves one
more fundamental constant, 2, than before). Wouldn’t it be nicer
if the periods of the fundamental circular functions cos and sin
were π rather than 2π? Wouldn’t it be nicer if half-plane integrals
such as the Hilbert transform were indicated by the appearance of
a factor of 2 rather than its disappearance?
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The sum of the interior angles of a triangle is π, granted. But
the sum of the exterior angles of any polygon, from which the sum
of the interior angles can easily be derived, and which generalizes
to the integral of the curvature of a simple closed curve, is 2π. The
natural formula for area of a circle, 1

2πr
2, has the familiar ring of

1
2gt

2 or 1
2mv

2; it would have instilled good habits for representing
quadratic quantities and foreshadowed the connection between the
area of a circle and the integral of circumference (with respect to
radius) better than πr2. Another way of putting it is that radius is
far more convenient than diameter – consider what the unit circle
means. If it weren’t, I would agree that the traditional choice of π
was right.

Of course you may say that none of this really matters or affects
the mathematics, because we may define things however we like;
and that is correct. But the analogy with e mentioned above, or
the idea of redefining the symbol i to mean

√
−1
2 shows the true

folly of π. Neither of these changes would change the mathematics,
but nor would anyone deny they are absurd.

What really worries me is that the first thing we broadcast to
the cosmos to demonstrate our “intelligence,” is 3.14 . . .. I am a
bit concerned about what the lifeforms who recieve it will do after
they stop laughing at creatures who must rarely question orthodoxy.
Since it is transmitted in binary, we can hope that they overlook
what becomes merely a bit shift!

I would not be surprised and would be interested to hear
if this idea has been discussed previously, but I was unable to
find any reference either in the wonderful Pi: A Source Book by
Lennart Berggren, Jonathan Borwein, and Peter Borwein, or in
Petr Beckmann’s A History of Pi, or on the Internet. When I have
suggested to people that π has a flaw, their reactions range from
surprise, amusement, and agreement, to “Of course, I knew it all
along,” to dismissal, to indignation.

The history (I was surprised, along with everyone I tell, that
the symbol was not in use in ancient Greece): Oughtred used the
symbol π/δ in 1647 for the ratio of the periphery of a circle to
its diameter. David Gregory (1697) used π/ρ for the ratio of the
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periphery of a circle to its radius. The first to use π as we use it
now was a Welsh mathematician, William Jones, in 1706 when he
stated 3.14159 & c. =π. Euler, who had until then been using the
letters p and c, adopted the symbol in 1737, leading to its universal
acceptance. If only he or Jones had set Gregory’s ρ to be 1 instead
of Oughtred’s δ, our formulas today would be much more elegant
and clear.

Acknowledgments Many thanks to James Tucker, Nelson
Beebe, Bill Bynum, Wayne Burleson, Micah Goodman, and Caroly
Connell for their contributions to this paper.

1 ππ = 2π = 6.283 . . . is called One turn.
So instead of 90o, the angle of a quadrant and a quarter an

hour being π
2 (’Pi over two’), it becomes 1

4 ππ, or quite naturally,
’A quarter turn’ !

Many other formulas simplify:
cos(x+ ππ) = cos(x) sin(x+ ππ) = sin(x) — Cos, Sin Periods
A = 1

2ππr
2 — Area, ( 1

2mv
2, 12gt

2),
etc, like Striling’s Formula, Euler’s Formula, Dirac’s Constant,

Angular Frequency, Fourier Coefficients, Cauchy’s Formula,
Gaussian Distribution, Nth Roots Of Unity.

Exercises

1. In the text, translate the sentences italicized.

2. Insert prepositions:
mathematics ... general, to name smth (smb) ... smth (smb),

one number ... nanosecond, to replace smth ... an alternative, to
compare smth ... smth, to impress smb ... smth, to blame smb ...
smth, to generalize smth ... smth ... , integral of cirumference ....
respect ... radius, ... the Internet, ratio of the periphery of a circle
... its diameter, contribution ... this paper.

3. Give the English equivalents of:
1) математика в целом
2) стоит признать
3) множитель двойки
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4) важное следствие
5) в некотором смысле
6) убедительный
7) нормальное распределение
8) площадь единичной сферы
9) внутренний угол
10) варьироваться от ... до ...
11) корень n-ой степени из единицы

4.Using your English-English dictionary, check the pronunciation
and stress of the words below:

society, significance, sign, consequence, quadrant, ubiquitous,
series, area, sphere, height, circumference, interior, exterior,
polygon, curvature, cosmos, ratio, neither.

5. Make sure you pronounce the following surnames correctly:
Euler, Cauchy, Stirling, Bonnet, Picard, Archimedes, Maxwell,

Gauss, Ampere, Coulomb, Hilbert, Oughtred, Gregory, Dirac,
Fourier

6. Give the correct pronunciation of the following:
π, e, cos, sin, i, δ, ρ.

7. At the end of the paper the author names formulas that
simplify. Write them explicitly (with ππ) and read them.

8. Answer the questions:
1) Do you agree that forumlas look better with ππ?
2) Could you give any formulas that would become “worse” if

ππ is introduced?
3) Could you explain the minus signs if e is replaced by 1

e =
0.3678 . . .? Write down some formulas.

4) Do you think there are other unfortunate notational
conventions? Give examples. Try to improve them.
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9. Read the quotations below and answer the questions.
Thomas John Watson, Sr. (1874-1956), CEO of IBM.
I think that there is a world market for about five computers.
Dorothy M. Wrinch (1894-1976), British mathematician,

biologist and chemist.
First they said my [cycol] structure [of proteins] couldn’t

exist. Then when it was found in Nature they said it couldn’t be
synthesized in a laboratory. Then when it was synthesized they
said it wasn’t important anyway.

1. Can you explain why Watson was so wrong?
2. Was it possible for one to predict the future of computers?
3. Could you make your prediction of IT development?
4. Explain why Wrinch’s colleagues were wrong.
5. What made them think in the way they did?
6. Give other examples of false predictions.
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XVII. Mathematical
Anecdotes

Steven G. Krantz, The Mathematical Intelligencer, Volume 12,
No. 4 (Fall 1990), 32-38.

In any field of human endeavor, the “great” participants are
distinguished from everyone else by the arcana and apocrypha that
surround them. Stories about Wolfgang Amadeus Mozart abound,
yet there are few stories about his musical contemporaries. Mozart
had the je ne sais quoi that made people want to tell stories about
him.

And so it goes with mathematicians. Over the years I have
collected dozens of anecdotes about famous mathematicians (a
necessary condition for being the subject of legend is fame; it
is by no means sufficient). These stories are of several types: (i)
incidents to which I have been witness (there are few of these);
(ii) incidents related to me by someone who witnessed them (on
statistical grounds, one expects a greater number of these); and
(iii) incidents that have been passed down through iterated tellings
and are therefore unverifiable. I shall not consistently classify the
stories that I will relate here. In many cases I cannot remember
which of the three types they are, and actually knowing would
generally spoil the fun. In any event, I must bear the ultimate
responsibility for the stories.
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In writing this article, I am running the risk that readers will
think me flip, disrespectful, or (worse) that I am attacking people
who cannot fight back. Let me set the record straight once and
for all: To me, the mathematicians described here are among the
gods of twentieth-century mathematics. Much of what we know,
and certainly much of my own work, follows from their insights. The
enormous scholarly reputations of these men sometimes cause their
humanity to be forgotten. Bergman, Besicovitch, Gödel, Lefschetz,
and Wiener were not merely collections of theorems masquerading
as people; they had feet of clay like the rest of us. In telling stories
about them, we bring them back to life and celebrate their careers.

Bergman
Stefan Bergman (1898 — 1977) was a native of Poland, He began

his career in the United States at Brown University. It is said that
shortly after Bergman and his mistress arrived in the United States,
he took her aside and told her, “Now we are in the United States
where customs are different. When we are with other people, you
should call me ’Stefan.’ But at home you should continue to call me
’Professor Doktor Bergman.’ ” Others who knew Bergman will say
that he was not the sort of man who would have had a mistress. It
is more likely that the man in question was von Mises (Bergman’s
sponsor); there is general agreement that the woman was Hilda
Geiringer. In fact another story holds that Norbert Wiener (more on
him later) went to D. C. Spencer around this time and said, “I think
that we should call the FBI (Federal Bureau of Investigation).”
Puzzled, Spencer asked why. “Because von Mises has a mistress,”
was the serious reply.

After a few years Bergman moved to Harvard and then to
Stanford, where he spent most of his career. Supported almost
always on grants and other soft money, Bergman rarely taught. This
fact may have contributed to the general murkiness of his verbal
and written communications. Murkiness aside, Bergman was proud
of his ability to express himself in many tongues. Said he, “I speak
twelve languages – English the bestest.”

In fact Bergman had a stammer and was sometimes difficult
to understand in any language. Once he was talking to Antoni
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Zygmund, another celebrated Polish analyst, in their native tongue.
After a bit Zygmund said, “Please let’s speak English. It’s more
comfortable for me.”

Although Bergman had many fine theorems to his credit
(including the invention of a version of the Silov boundary), the
crowning achievement of his mathematical work was the invention
of the kernel function, now know as the Bergman kernel. He
spent most of his life developing properties and applications of
the Bergman and the associated Bergman metric. It must have
been a special source of pride and pleasure for him when, near the
end of Bergman’s life, Charles Fefferman (1974) found a profound
application of the Bergman theory to the study of biholomorphic
mappings. Fefferman’s discoveries, coupled with related ideas of
J.J.Kohn and Norberto Kerzman, created a renaissance in the
study of the Bergman kernel. Indeed a major conference in several
complex variables was held in Williamstown in 1975 in which
many of the principal lectures mentioned or discussed the Bergman
kernel.

Bergman had always felt that the value of his ideas was
not sufficiently appreciated. He attended the conference and
commented to several people how pleased he was that his wife
(also present) could see his work finally being recognized. I sat
next to him at most of the principal lectures. In each of these,
he listened carefully for the phrase “and in 1922 Stefan Bergman
invented the kernel function.” Bergman would then dutifully record
this fact in his notes — and nothing more. I must have seen him
do this twenty times during the three-week conference.

There was a rather poignant moment at the conference. In the
middle of one of the many lectures on biholomorphic mappings,
Bergman stood up and said, “I think you people should be looking
at representative coordinates (also one of Bergman’s inventions)”.
Most of us did not know what he was talking about, and we
ignored him. He repeated the comment a few more times, with
the same reaction. Five years later S. Webster, S. Bell, and E.
Ligocka found astonishing simplifications and extensions of the
known results about holomorphic mappings using — guess what?
— representative coordinates.
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Bergman was an extraordinarily kind and gentle man. He went
out of his way to help many young people begin their careers, and he
made great efforts on behalf of Polish Jews during the Nazi terror.
He is remembered fondly by all who knew him. But he was a shark
when it came to his mathematics. When he attended a lecture about
a theorem he liked, he often went to the lecturer afterwards and
said “I really like your theorem. It reminds me of my studies of the
kernel function. Consider complex two-space...” And Bergman was
off and running on his favorite topic. On another occasion a young
mathematician gave Bergman a manuscript he had just written.
Bergman read it and said “I like your result. Let’s make it a joint
paper, and I’ll write the next one.”

Whenever someone proved a new theorem about the Bergman
kernel or Bergman metric, Bergman made a point of inviting the
mathematician to his house for supper. Bergman and his wife were
a gracious host and hostess and made their guest feel welcome.
However, after supper the guest had to pay the piper by giving an
impromptu lecture about the importance of the Bergman kernel.

Bergman’s wife Edy was very devoted to him, but life with
Stefan was sometimes trying. When they first got married, Bergman
had just completed a difficult job search. In the days immediately
following World War II, jobs were scarce, and Bergman wanted a
position with no teaching. After a long period of disappointment,
Shiffer got Bergman a position at Stanford; so the mood was high at
the Bergmans’ wedding reception. The reception took place in New
York City, and Bergman was delighted that one of the guests was a
mathematician from New York University with whom he had many
mutual interests. They got involved in a passionate mathematical
discussion and after a while Bergman announced to the guests that
he would be back in a few hours: He had to go to NYU to discuss
mathematics. On hearing this, Shiffer turned to Bergman and said
“I got you your job at Stanford; if you leave this reception, I will
take it away.” Bergman stayed.

Bergman thought intensely about mathematics and cared
passionately about his work. One day, during the 1950 International
Congress of Mathematicians in Cambridge, Bergman had a
luncheon date with two Italian friends. Right on schedule they
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appeared at Bergman’s office: the distinguished elder Italian
mathematician Piccone (bearing a bouquet of flowers for Bergman!)
and his younger colleague Sichera. This was Piccone’s first visit
to the United States, and he spoke no English; Sichera acted as
interpreter. After greetings were exchanged, Bergman asked Sichera
whether he had read Bergman’s latest paper. Sichera allowed that
he had, and that he thought it was very interesting. However, he
said that he felt that certain additional differentiability assumptions
were required. Bergman said, “No, no, you don’t understand,” and
proceeded to explain on the blackboard, Piccone, understanding
none of this, waited patiently. After the explanation, Bergman
asked Sichera whether he now understood. Sichera said that he
did, but he still thought that some differentiability hypotheses were
required in a certain step. Bergman became adamant and a heated
argument ensued — Piccone comprehending none of it. After some
time, Sichera said, “Well, let’s forget it and go to lunch.” Bergman
cried, “No differentiability — no lunch!” and he remained in his
office while the two Italians went to lunch. Piccone gave the flowers
to the waitress.

There is considerable evidence that Bergman thought about
mathematics constantly. Once he phoned a student, at the student’s
home number, at 2:00 A.M. and said, “Are you in the library? I want
you to look something up for me!”

On another occasion, when Bergman was at Brown, one of
Bergman’s graduate students got married. The student planned
to attend a conference on the West Coast, so he and his new
bride decided to take a bus to California as a sort of makeshift
honeymoon. There was a method in their madness: the student
knew that Bergman would attend the conference but that he liked
to get where he was going in a hurry. The bus seemed the least
likely mode of transportation for Bergman. But when Bergman
heard about the impending bus trip, he thought it a charming idea
and purchased a bus ticket for himself. The student protested that
this trip was to be part of his honeymoon, and that he could not
talk mathematics on the bus. Bergman promised to behave. When
the bus took off, Bergman was at the back of the bus and, just
to be safe, Bergman’s student took a window seat near the front
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with his wife in the adjacent aisle seat. But after about ten minutes
Bergman got a great idea, wandered up the aisle, leaned across the
scowling bride, and began to discuss mathematics. It wasn’t long
before the wife was in the back of the bus and Bergman next to
his student — and so it remained for the rest of the bus trip! The
story has a happy ending: the couple is still married, has a son who
became a famous mathematician, and several grandchildren.

Presumably it was his preoccupation with mathematics that
caused Bergman to appear to be out of touch with reality at times.
For example, one day he went to the beach in northern California
with a group of people, including a friend of mine who told me
this yarn. Northem California beaches are cold, so when Bergman
came out of the water, he decided that he’d better put on his
street clothes. As he wandered off to the parking lot, his friends
noticed that he was heading in the wrong direction; but they were
used to his sort of behavior and paid him no mind. In a while,
Bergman returned— clothed — exclaiming “You know, there’s the
most unfriendly woman in our car!”

Bergman was a prolific writer. Of course he worked in the days
before the advent of word processors. His method of writing was
this. First, he would write a manuscript in longhand and give it to
the secretary. When she had it typed up, he would begin revising,
stapling strips of paper over the portions that he wished to change.
Strips would be stapled over strips, and then again and again, until
parts of the manuscript would become so thick that the stapler
could no longer penetrate. Then the manuscript would be returned
to the secretary for a retype and the whole cycle would begin again.

Sometimes it would repeat ad infinitum, Bergman once told a
student that “a mathematician’s most important tool is the stapler.”
Bergman had a self-conscious sense of humor and a loud laugh. He
once walked into a secretary’s office and, while he spoke to her,
inadvertently stood on her white glove that had fallen on the floor.
After a bit she said “Professor Bergman, you’re standing on my
glove.” He acted embarrassed and exclaimed “Oh, I thought it was
a mousy.” (It should be mentioned here that a number of wildly
exaggerated versions of this story are in circulation, but I got this
version from a primary source.)
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Besicovitch
Abram S. Besicovitch (1891 — 1970) was a geometric analyst

of extraordinary power. He became world-famous for his solution
of the Kakeya needle problem. The problem was to find the planar
region of least area with the property that a segment of unit length
lying in the region can be moved through all direction angles θ,
0 ≤ θ ≤ 2π, within the region. Besicovitch’s surprising answer was
that for any ε > 0, there is such a region with area less than ε.

Besicovitch, a Russian by birth, was a creature of the old world.
After leaving Russia (a prudent move on account of his rumored
black market dealings during World War I), Besicovitch ended up
at Cambridge University in England. A dinner was given in his
honor, at which the main course was some sort of game bird. In his
thick Russian accent, Besicovitch asked the name of the tasty food
that they were eating. When he heard the reply, he exclaimed, “In
Russia, we are not allowed to eat the peasants!”

Besicovitch was a smart man, so he quickly became proficient
at English. But it was never perfect. He adhered to the Russian
paradigm of never using articles before nouns. One day, during
his lecture, the class chuckled at his fractured English. Besicovitch
turned to the audience and said “Gentlemen, there are fifty million
Englishmen speak English you speak; there are two hundred million
Russians speak English I speak”. The chuckling ceased.

In another lecture series, on approximation theory, he
announced “zere is no t in ze name Chebyshov.” Two weeks
later he said “Ve now introduce ze class of T-polynomials. Zey
are called T-polynomials because T is ze first letter of ze name
Chebyshov.”

Besicovitch, in spite of his apparent powers, was modest. On his
thirty-sixth birthday, he convinced himself that his best and most
intense years of research were over. He said “I have had fourfifths of
my life.” Twenty-three years later, when in 1950 he was awarded the
Rouse Ball Chair of Mathematics at Cambridge, someone reminded
him of this frivolous remark. He replied, “Numerator was correct.”

In the 1960s, the Mathematical Association of America
made a series of delightful one-hour films in each of which a
great mathematician gave a lecture, for a general mathematical
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audience, about one of his achievements. One of these films starred
Besicovitch, and he explained his solution of the Kakeya needle
problem. Besicovitch was a natty dresser under any circumstances,
and he wore to this lecture an attractive light beige suit. However
the lights were hot and, after a while he removed his jacket,
revealing bright red suspenders! The producers were most surprised
(this was thirty-five years ago, and nobody but firemen wore red
suspenders), but the filming continued and the suspenders can be
seen today.

At one point during the filming of Besicovitch, the aged
professor had to blow his nose. He drew a large white handkerchief
from his pocket and did so — loudly. Later, when Besicovitch
viewed the finished product, he objected to the noseblowing scene
as undignified — he wanted it removed. The producers were able
to replace the offending video segment, but it was decided that
the sound should remain. As a result, if you view the film today,
there comes a point in the action where the camera abruptly leaves
Besicovitch and focuses on the side of the room — and you can
hear Besicovitch blow his nose.

Gödel
Kurt Gödel (1906 — 1978) was one of the most original

mathematicians of the twentieth century. Any thesaurus links
“originality” with “eccentricity,” and Gödel had his fair share of
both. Toward the end of his life, Gödel became convinced that he
was being poisoned, and he ended up starving himself to death.
However, years before that, his peculiar point of view exhibited
itself in other ways.

Einstein was Gödel’s closest personal friend in Princeton. For
several years Einstein, Gödel, and Einstein’s assistant Ernst Straus
(who later became a well-known combinatorial theorist) would lunch
together. During lunch they discussed non-mathematical topics —
frequently politics. One notable discussion took place the day after
Douglas MacArthur was given a ticker-tape parade down Madison
Avenue upon his return from Korea. Gödel came to lunch in an
agitated state, insisting that the man in the picture on the front
page of the New York Times was not MacArthur but an imposter.
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The proof? Gödel had an earlier photo of MacArthur and a
ruler. He compared the ratio of the length of the nose to the distance
from the tip of the nose to the point of the chin in each picture.
These were different: Q.E.D.

Gödel spent a significant part of his career trying to decide
whether the Continuum Hypothesis (CH) is independent of the
Axiom of Choice (AC). In the early 1960s, a brash, young, and
extremely brilliant Fourier analyst (student of the aforementioned
Zygmund) named Paul J. Cohen (people who knew him in high
school and college assure me that he was always brash and brilliant)
chatted with a group of colleagues at Stanford about whether he
would become more famous by solving a certain Hilbert problem
or by proving that CH is independent of AC. This (informal)
committee decided that the latter problem was the ticket. [To be
fair, Cohen had been interested in logic and recursive functions
for several years; he may have conducted this seance just for fun.]
Cohen went off and learned the necessary logic and, in less than
a year, had proved the independence. This is certainly one of the
most amazing intellectual achievements of the twentieth century.
Cohen’s technique of “forcing” has become a major tool of modern
logic, and Cohen was awarded the Fields Medal for the work. But
there is more.

Proof in hand, Cohen flew off to the Institute for Advanced
Study to have his result checked by Kurt Gödel. Gödel was naturally
skeptical, as Cohen was not the first person to claim to have solved
the problem, and Cohen was not even a logician! Gödel was also,
at this time, beginning his phobic period. When Cohen went to
Gödel’s house and knocked on the door, it was opened six inches
and a hoary hand snatched the manuscript and slammed the door.
Perplexed, Cohen departed. However, two days later Cohen received
an invitation for tea at Gödel’s home. His proof was correct: The
master had certified it.

Lefschetz
The story goes that Solomon Lefschetz (1884 — 1972) was

trained to be an engineer. This was in the days, near the turn of
the century, when engineering was part carpentry, part alchemy,
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and part luck (the pre-von Karman era). In any event, Lefschetz
had the misfortune to lose both his hands in a laboratory accident.
This mishap was lucky for us, for he subsequently, at the age of
thirty-six, became a mathematician.

Lefschetz had two prostheses in place of his hands — they looked
like hands, loosely clenched, but they did not move or function in
any way. Over each he wore a shiny black glove. A friend of mine
was a graduate student of Lefschetz; he tells me that one of his
daily duties was to push a piece of chalk into Lefschetz’s hand each
morning and to remove it at the end of the day.

Lefschetz starred in one of the MAA films. He gave a lovely
lecture, punctuated by a cacophony of squeaky chalk, about his
celebrated fixed point theorem. His feelings about the film were
mixed. At one point he says on film “I hope this is clear; it’s
probably about as clear as mud.” After his lecture comes a filmed
round table discussion including John Moore, Lefschetz, and a few
others. For ten or fifteen minutes they reminisce about the old
days at Princeton. One person reminds Lefschetz that in the late
1940s, during the heyday of the development of algebraic topology,
they were on a train together. Lefschetz was asked the difference
between algebra and topology. He is reported to have said “If it’s
just turning the crank, it’s algebra; but if there is an idea present,
then it’s topology.” When Lefschetz was reminded of this story in
the film, he became most embarrassed and said “I couldn’t have said
anything like that.”

With his artificial hands, Lefschetz could not operate a
doorknob, so his office door was equipped with a lever. Presumably
he had difficulty with other routine daily matters, too — dialing a
phone, turning on a light, etc. By the time I was a graduate student
at Princeton, Lefschetz was 87. He was still mathematically sharp
but he had trouble getting around. In those days Fine Hall, the
mathematics building in Princeton, was having constant trouble
with the elevators: Push the button for the fifth floor and you’re
shot to the penthouse, down to the basement, and ejected on
seven; or variations on that theme. The receptionist kept a log of
complaints so that she could report them to the person who came
to repair the elevator. One day Lefschetz got into the elevator
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and it delivered him to the fourth floor “machine room”; this
room houses the air conditioning equipment and is ordinarily only
accessible with a janitor’s key. Poor Lefschetz unwittingly wandered
out into the room, only to have the elevator door shut behind him
before he realized what was going on. He was trapped in total
darkness, could not summon the elevator (no key), could not turn
the doorknob to use the stairwell, and could not find a telephone
(which, even had he found, he probably could not have dialed).
The members of the mathematics department rode that elevator
for several hours, not realizing that Lefschetz was missing, before
someone finally heard Lefschetz’s shouts and understood what was
going on. Fortunately Lefschetz survived the incident unharmed.

Speaking of the elevators at Princeton, one of my earliest
memories as a graduate student was of the elevator emergency stop
alarm going off three or four times a day. Especially puzzling was
that everyone ignored it. Bear in mind that this alarm only sounds
if someone inside the elevator sets it off. It is sometimes used by
janitors to hold the elevator at a certain floor; but the janitors
never used it during the day. After I had asked around for some
time, someone finally told me the secret. When the mathematics
department moved from old Fine Hall to new Fine Hall (sometimes
called “Finer Hall,” overlooking “Steenrod Square”), Ralph Fox,
the famous topologist, was annoyed that there was no men’s room
on his floor. So, whenever he had to use the facilities, he would
take the elevator to the next floor, set the emergency stop alarm,
do what needed to be done, and then return to his floor. Now I
knew why everyone smiled when the alarm went off. So much for
boyhood memories; back to Lefschetz.

Lefschetz was famous for his aggressive self-confidence. He
could terrorize most other mathematicians easily. At committee
meetings he would pound his fist on the table with terrifying effect.
So it is with pleasurable surprise that one hears of exceptions. The
one I have in mind is a certain unflappable graduate student at
the time of the student’s qualifying examination. The qualifying
exams at Princeton are administered as one long oral exam:
three professors and one graduate student locked in an office for
about three and one-half hours. The student is examined on real
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analysis, complex analysis, algebra, and two advanced topics of
the student’s choosing (subject to the approval of the Director
of Graduate Studies). Our confident student had Lefschetz on
his committee. Lefschetz was famous for, among other things,
profound generalizations of Picard’s theorems in function theory to
several complex variables. So it came as no surprise when Lefschetz
asked the student “Can you prove Picard’s Great Theorem?” Came
the reply “No, can you?” Lefschetz had to admit that he could not
remember, and the exam moved on to another topic.

Lefschetz was one of those mathematicians, of whom we all know
at least one, who would sleep during lectures and then wake up at
the end with a brilliant question. At one colloquium, the speaker
got stuck on a point about twenty minutes into his talk. A silence
of several minutes ensued. This threw off Lefschetz’s rhythm. He
woke up, said “Are there any questions? Thank you very much,”
and the seminar was ended with a round of applause.

The “roasting” of an individual is a peculiarly American
custom. A group of close friends holds a fancy dinner in honor
of the victim, after which they stand up one by one and make a
collection of (humorously delivered) insulting remarks about him.
Some anecdotes are in the nature of a roast. Here is an example. In
the fifties, it was said in Princeton that there were four definitions
of the word “obvious.” If something is obvious in the sense of
Beckenbach, then it is true and you can see it immediately, If
something is obvious in the sense of Chevalley, then it is true and
it will take you several weeks to see it. If something is obvious in
the sense of Bochner, then it is false and it will take you several
weeks to see it. If something is obvious in the sense of Lefschetz,
then it is false and you can see it immediately.

This last item reminds me of the old concept of “true in the sense
of Henri Cartan.” In the 1930s and 1940s, a theorem was “true in
the sense of Cartan” if Grauert could not find a counter-example
in the space of an hour.

The discussion of “truth” and “obviousness” raises the issue
of standards. Perhaps the least delightful arena in which we all
wrestle with standards is that of referees’ reports. The Annals of
Mathematics, Princeton’s journal, has very high standards and
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exhorts its referees to be toughminded. Lefschetz was instrumental
in establishing the pre-eminence of the Annals. But I doubt that
even he could have anticipated the following event. Many years
ago, Gerhard Hochschild (who sets high standards for himself and
everyone else) submitted a paper to the Annals. The referee’s report
said “Good enough for the Annals. Not good enough for Hochschild.
Rejected.”

Wiener
The brilliant analyst Norbert Wiener (1894 — 1964) is a favorite

subject of anecdotes. He is just modern enough that many living
mathematicians knew him and was just eccentric enough to be a
neverending object of stories and pranks.

Born the son of a distinguished professor of languages,
Wiener became one of America’s first internationally recognized
mathematicians. Because of anti-Semitism in the American
mathematical establishment, Wiener spent the early years of
his career working in England. The story goes that when he
met Littlewood, he said, “Oh, so you really exist, I thought that
’Littlewood,’ was just a pseudonym that Hardy put on his weaker
papers.” Poor Wiener was so chagrined by this story that he
denied it vehemently in his autobiography, thus inadvertently
fueling belief in its validity. [In fairness to Wiener I should point
out that another popular version of the story involves Edmund
Landau: Landau so doubted the existence of Littlewood that he
made a special trip to Great Britain to see the man with his own
eyes.]

After Wiener left Britain, he moved to MIT where he stayed
for more than twenty-five years. He developed a reputation all over
campus as a brilliant scientist and a bit of a character. He was
always working — either thinking or writing or reading. When he
walked the halls of MlT, he invariably read a book, running his
finger along the wall to keep track of where he was going. One day,
engaged in this activity, Wiener passed a classroom where a class
was in session. It was a hot day and the door had been left open.
But of course Wiener was unaware of these details — he followed
his finger through the door, into the classroom, around the walls
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(right past the lecturer) and out the door again.
People who knew Wiener tell me — and this comes through

clearly in his autobiography as well— that he struggled all his
life with feelings of inferiority. These feelings applied to non-
mathematical as well as to mathematical activities. Thus, when he
played bridge at lunch with a group of friends, he would invariably
say, every time he bid or played, “Did I do the right thing? Was
that a good play?” His partner, Norman Levinson, would patiently
reassure him each time that he couldn’t have done any better.

It is not a well-known fact that Wiener wrote a novel. The villain
in the novel was a thinly disguised version of R. Courant. The
hero was a thinly disguised version of Wiener himself. Friends were
successful in discouraging him from publication. [Another version
of the story is that the villain was Osgood. In the book, he proves a
theorem that is a thinly disguised version of a celebrated theorem
of Osgood, but in a different branch of mathematics; he ends up
dying in China.]

Students liked to play pranks on Wiener. He read the newspaper
every day at the same time in a certain lounge at MIT. As Wiener
sat with the newspaper spread open before him, a student would
sneak up and set the bottom of the paper afire. The results were
spectacular, and the joke was repeated again and again.

And sometimes Wiener played jokes on his students, though he
did not realize that he was doing so. On one occasion, a student
asked him how to solve a certain problem. Wiener thought for a
moment and wrote down the answer. The student hadn’t really
wanted the answer but wanted the method to be explained (this
really was a long time ago!). So he said “But isn’t there some other
way?” Wiener thought for another moment, smiled, and said “Yes
there is” — and he wrote down the answer a second time.

Probably the most famous Wiener story concerns a day when
the Wiener family was moving to a new home. Wiener’s wife knew
Norbert only too well. So on the night before, as well as the morning
of, the moving day, she reminded him over and over that they were
moving. She wrote the new address for him on a slip of paper (the
new house was just a few blocks away), gave him the new keys, and
took away his old keys. Wiener dutifully put the new address and
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keys into his pocket and left for work. During the course of the day,
Wiener’s thoughts were elsewhere. At one point somebody asked
him a mathematical question, and Wiener gave him the answer on
the back of the slip of paper his wife had given him. So much for
the new address! At the end of the day Wiener, as was his habit,
walked home — to his old house. He was puzzled to find nobody
home. Looking through the window, he could see no furnishings.
Panic took over when he discovered that his key would not fit the
lock Wild-eyed, he began alternately to bang on the door and to
run around in the yard, Then he spotted a child coming down
the street. He ran up to her and cried “Little girl, I’m very upset.
My family has disappeared and my key won’t fit in the lock.” She
replied, “Yes, daddy, Mommy sent me for you.”

My final Wiener story, indeed my final story, does not seem
to be well known, Even inveterate Wienerologists proclaim it too
good to be true. But it’s not too good for this article. I believe
that I heard it when I was a graduate student at Princeton. As
I’ve mentioned, Wiener was quite a celebrated figure on the MIT
campus. Therefore, when one of his students spied Wiener in the
post office„ the student wanted to introduce himself to the famous
professor. After all, how many MIT students could say that they
had actually shaken the hand of Norbert Wiener? However, the
student wasn’t sure how to approach the man. The problem was
aggravated by the fact that Wiener was pacing back and forth,
deeply lost in thought. Were the student to interrupt Wiener, who
knows what profound idea might be lost? Still, the student screwed
up his courage and approached the great man. “Good morning,
Professor Wiener,” he said. The professor looked up, struck his
forehead, and said “That’s it: Wiener!”

Exercises

1. In the text, translate the sentences italicized.

2. Insert prepostions where necessary:
to distinguish smth ... smth, smth is related ... smth, to be a

witness ... smth, responsibility ... smth, to arrive ... the United
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States, to arrive ... the Victoria Station, to arrive ... home, a
conference ... several complex variables, lectures ... biholomorphic
mappings, ... behalf of smb, to remind ... smth, to put ... clothes, to
become famous ... smth, ... spite of smth, ... certain circumstances,
to object ... smth, independent ... smth, ... the age of thirty six, to
approach ... smth, to adhere ... smth.

3.Using your English-English dictionary, check the pronunciation
and stress of the words below:

dozen, record (v.,n.), merely, renaissance, appreciate, poignant,
scarce, graduate (v.,n.), aisle, processor, ad infinitum, conscious,
exaggerate, source, circumstance, politics, thesaurus, exhibit,
close (v.,adj.), hypothesis, colleague, comittee, latter, technique,
alchemy, variable, issue, wrestle, doubt, pseudonym, vehemently,
autobiography, inferiority.

4. Give the English equivalents of:
1) раз и навсегда
2) отнюдь не достаточный
3) человек, о котором идет речь
4) крупная конференция
5) прикладывать усилия
6) посещать лекции
7) аспирант (брит., амер.)
8) не обращать внимания
9) текстовый редактор
10) задача заключалось в том, чтобы найти
11) прочитать лекцию
12) при определенных обстоятельствах
13) что и требовалось доказать
14) найти контрпример
15) он завоевал репутацию
16) подшучивать над студентами
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5. Read the quotations below and answer the questions.
Anonymous
A physicist learns more and more about less and less, until

he knows everything about nothing; whereas a philosopher learns
less and less about more and more, until he knows nothing about
everything.

1. Explain what the author implies by nothing.
2. Could you agree with the second part of the quotation?
Winston Leonard Spencer Churchill (1874-1965), British

author and Prime Minister.
Praise up the humanities, my boy. That will make them think

that you are broad-minded.
3. Is it possible that Churchill spoke essentially about the same

as the author of the quotation above?
4. Do you think Churchill considered the humanities to be

inferior to the sciences?
David Zeaman (1921 - ), American psychologist.
One of the differences between the natural and the social

sciences is that in the natural sciences, each succeeding generation
stands on the shoulders of those that have gone before, while
in the social sciences, each generation steps in the faces of its
predecessors.

5. Do you think Zeaman meant that it is an intrinsic property
of the social sciences when “succeeding generation stands on
the shoulders of those that have gone before, while in the social
sciences, each generation steps in the faces of its predecessors”.
Give examples. Give counter-examples.
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XVIII. Completing Book
II of Archimedes’s
On Floating Bodies

Chris Rorres, The Mathematical Intelligencer, volume 26,
number 3, summer 2004, pp. 32-42.

Archimedes (c. 287 B.C. to 212/211 B.C.) lived in the Greek
city-state of Syracuse, Sicily, up to the time that it was conquered
by the Romans, a conquest that led to his death. Of his works
that survive, the second of his two books of On Floating Bodies1
is considered his most mature work, commonly described as a tour
de force. This book contains a detailed investigation of the stable
equilibrium positions of floating right paraboloids2 of various
shapes and relative densities, but restricted to the case when the
base of the paraboloid lies either entirely above or entirely below
the fluid surface.

This paper summarizes the results of research in which I
completed Archimedes’s investigation to include also the more
complex cases when the base of the floating paraboloid is
partially submerged. Modern scientific computing and computer
graphics enabled me to construct a three-dimensional surface
that summarizes all possible equilibrium positions (both stable
and unstable) for all possible shapes and relative densities. This
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equilibrium surface contains folds and cusps that explain certain
catastrophic phenomena — for example, the sudden tumbling
of a melting iceberg or the toppling of a tall structure due to
liquefaction of the ground beneath it — that have long been
observed but not previously explained fully.

Books I and II
Book I of On Floating Bodies begins with a derivation of

Archimedes’s Law of Buoyancy from more fundamental principles
and finishes with a simple, elegant geometric proof that a
floating segment of a homogeneous solid sphere is always in
stable equilibrium when its base is parallel to the surface of
the fluid, either above the fluid surface or below it. Book I
introduced the concept of fluid pressure and initiated the science
of hydrostatics. It took almost eighteen centuries before this work
on the nature of fluids was continued by such scientists as Simon
Stevin (Dutch, 1548-1620), Galileo Galilei (Italian, 1564-1642),
Evangelista Torricelli (Italian, 1608-1647), Blaise Pascal (French,
1623-1662), and Isaac Newton (English, 1642-1727). In the interim,
Book I served mainly as the basis for determining the density
of objects, such as gemstones and precious-metal artifacts, by
comparing their weights in air and in water.

In Book II Archimedes extended his stability analysis of floating
bodies from a segment of a sphere to a right paraboloid. However,
Book II contained many sophisticated ideas and complex geometric
constructions and did not have the appeal of Book I. Only after
Greek geometry was augmented with algebra, trigonometry, and
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analytical geometry and the field of mechanics reached the maturity
to handle the concepts of equilibrium and stability that Archimedes
introduced was Book II seriously studied. It then became the
standard starting point for scientists and naval architects examining
the stability of ships and other floating bodies3.

To describe the results Archimedes obtained in Book II let us
first precisely define his object of study:

Definition: A paraboloid is a homogeneous solid convex object
bounded by a surface obtained by rotating a parabola about
its axis of symmetry and by a plane that is not parallel to the
parabola’s axis of symmetry. If the plane is perpendicular to the
axis of symmetry it is called a right paraboloid, otherwise it is called
an oblique paraboloid. The planar portion of the surface, which is
either circular or elliptical, is called the base of the paraboloid.

Let R be the radius of the base of a right paraboloid and let
H be its height (Fig. 1A). Define its base angle φ as the angle
between 0o and 90o for which tanφ = 2H/R. In a profile view of
the paraboloid it is the angle between its base and the tangent
line to the parabolic cross section at the base (Fig. 1B). This base
angle determines the shape of the parabola. Next, let ρbody be the
mass-density of the paraboloid and let ρfluid be the mass-density of
the fluid in which it is floating within a uniform gravitational field.
Following Archimedes, let us neglect the density of the air above
the fluid4 and define the relative density (or specific gravity) of the
paraboloid as s = ρbody/ρfluid , which is a number in the interval
[0, 1] for a floating paraboloid. Finally, let θ be the tilt angle (or heel
angle), by which is meant the angle of inclination in the interval
[0o, 180o] of the axis of the paraboloid from the vertical with 0o
corresponding to the base above the fluid level (Fig. 1B). As with
Archimedes, let us confine the rotation of the paraboloid so that
its axis always lies in a fixed vertical plane.

Below is an example of one of the ten propositions in Book II, in
which I first give a very literal translation of the Greek text and then
a very liberal modern translation. In the literal translation the ‘axis’
is a line segment whose length is the height H of the paraboloid and
the ‘line-up-to-the-axis’ is the semilatus rectum of the paraboloid,
which is a line segment of length R2/2H. The last sentence in my
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translation actually consists of seven excerpts from the beginning
of the proof of Proposition 8 where a geometric construction is
described.

Archimedes’s Proposition 8. Literal Translation: A right
segment of a right-angled conoid, when its axis is greater than one-
and-a-half times the line-up-to-the-axis, but small enough so that
its ratio to the line-up-to-the-axis is less than fifteen to four, and
when further its weight has to that of the fluid [of equal volume] a
ratio less than that which the square of the amount by which the
axis exceeds one-and-a-half times the line-up-to-the-axis bears to
the square of the axis, will, when so placed in the fluid that the base
does not touch the surface of the fluid, not return to the vertical
position and not remain in the inclined position except when its axis
makes with the surface of the fluid a certain angle to be described.

[This angle is EBΨ in the diagram (Fig. 2) in which] (1) B∆
is equal to the axis; (2) BK is twice K∆; (3) KP is equal to the
line-up-to-the-axis; (4) the weight of the body is to that of the fluid
[of equal volume] as the square of side ΦZ is to that of side B∆;
(5) ΦX is twice XZ; (6) ΦX is equal to PΨ; and (7) the square of
side ΨE is half of the rectangle of sides KP and BΨ.

Archimedes’s Proposition 8. Modern Translation:
A right paraboloid whose base angle φ satisfies 3 < tan2 φ < 15

2
and whose relative density s satisfies s < (1 − 3 ctg2 φ)2

has precisely one stable equilibrium position with its base
completely above the fluid surface. The corresponding tilt angle is
θ = tan−1

√
2
3 (1−

√
s) tan2 φ− 2.
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Archimedes’s objective in Proposition 8 was to describe a
geometric construction using compass and straightedge that begins
with three lines segments describing the shape and relative density
of the paraboloid (the axis, the line-up-to-the-axis, and the line
segment ΦZ whose length is

√
sH ) and ends with a diagram

in which the tilt angle is revealed. My objective in the modern
translation, however, was to summarize the geometric construction
in a single analytical expression in which the equilibrium tilt angle
θ is expressed as an explicit function of s and φ. My modern
translation incorporates centuries of algebraic, trigonometric,
and analytical developments and considerably alters how the
Greeks would have grasped Archimedes’s results. It also shows
the limitations of Greek geometry in formulating and describing
complicated physical phenomena.

Archimedes’s other propositions in Book II complete his study of
the stable equilibrium tilt angles when the base is either completely
above or completely below the fluid surface for appropriate values
of the base angle and the relative density. The main geometric tools
he used were the formulas for the volumes and centroids of right
and oblique paraboloids, formulas that he himself derived in other
works5. The mechanical tools he used—again, tools that he himself
first formulated — were his Law of Buoyancy for a floating body,
his Law of the Lever, and the equilibrium condition that the center
of gravity of the floating body must lie on the same vertical line
as its center of buoyancy. (Because a paraboloid is a homogeneous
convex body, its center of buoyancy coincides with the center of
gravity of its submerged portion.)

Righting and Energy Arms
The numerical techniques I used required the evaluation of the

moment acting on an unbalanced floating paraboloid. In Figure 1C
a right paraboloid is floating in a fluid with the weight of the
displaced fluid equal to the weight of the right paraboloid. However,
it is not in equilibrium because the center of gravity G of the
body is not on the same vertical line as its center of buoyancy B.
Rather, the weight of the paraboloid and the buoyancy force form a
couple that will cause the paraboloid to rotate in a counterclockwise

195



direction toward the equilibrium position shown in Figure 1B. The
value of the couple, called the righting moment, is the weight of the
paraboloid times the horizontal displacement GZ between G and
B, taken as positive if B is to the right of G. This horizontal
displacement is called the righting arm and its use is preferred
by naval architects to the righting moment. If a wave causes a
ship to heel, the righting-arm expressed as a function of the heel
angle affects the dynamics of how the ship will return to its vertical
equilibrium orientation. One of the standard specifications of a ship
is a graph of its righting arm for a wide range of heel angles.

If the base is completely above or below the fluid surface, it is
possible to determine an exact expression for the righting arm of
a floating right paraboloid using the exact formulas for the volume
and centroid of an oblique paraboloid. For example, if the base is
above the fluid surface then

Righting Arm
H

=
sin θ

tan2 φ

[
2− 2

3
(1−

√
s) tan2 φ+ tan2 θ

]
Setting this equal to zero determines all equilibrium tilt angles

with the base above the fluid surface and, in particular, returns
the expression for the tilt angle determined by Archimedes’s
Proposition 8 above. When the base is completely submerged,
symmetry principles can be used to obtain an analogous expression6.

While the righting arm provides the necessary information for
the stability analysis of a floating body, its potential energy also
provides some insight. Taking the fluid surface as the level of
zero potential energy, the potential energy of the paraboloid/fluid
system is the sum of the potential energy of the paraboloid and
the potential energy of the displaced fluid. The potential energy of
the paraboloid is its weight multiplied by the height of its center
of gravity G above the fluid surface. Likewise, the potential energy
of the displaced fluid is its weight (the same as the weight of
the paraboloid) multiplied by the distance of its center of gravity
B below the fluid surface. The total potential energy is then
the weight of the paraboloid multiplied by the vertical distance
between B and G. For a homogeneous convex paraboloid, G will
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always lie above B if the relative density is less than one and so
the potential energy will always be positive.

By analogy with the term ‘righting arm’ I shall call the vertical
displacement from B to G (BZ in Figure 1C) the energy arm of the
floating paraboloid. The fundamental relationship between force
and energy shows that when the righting arm and energy arm are
expressed as functions of the tilt angle θ, then

d(energy arm)

dθ
= righting arm.

In order to work with dimensionless units, let us divide both the
righting arm and the energy arm by the height H of the paraboloid.
Thus one unit of the normalized energy arm is the energy needed
to raise the paraboloid in air a distance equal to its height.

Figure 3 is an example of the normalized righting arm and
the normalized energy arm as a function of the tilt angle for a
right paraboloid with base angle 74.330o and relative density 0.510.
When its base is above the fluid surface (0o ≤ θ ≤ 28.2o) I used Eq.
(1) and when the base is below the fluid surface (151.0o ≤ θ ≤ 180o)
a similar exact expression was used.

When the base is cut by the fluid surface I used numerical
integration to determine the volume and first moments of the
unsubmerged portion of the paraboloid, from which the center
of buoyancy and resulting righting-arm and righting-arm curves
were determined7. The six roots of this righting-arm curve, or,
equivalently, the six stationary points of the energy-arm curve,
determine the six equilibrium positions of the corresponding
paraboloid.

Because a positive righting arm produces a counterclockwise
rotation and a negative righting arm produces a clockwise
rotation, the way in which the algebraic sign changes through
a root determines the stability classification of the corresponding
equilibrium configuration. In particular, a root is asymptotically
stable (AS), neutrally stable to first order (NS), or unstable (US)
if the slope of the righting curve at the root is positive, zero, or
negative, respectively8. None of the six equilibrium positions for
the particular paraboloid described in Figure 3 were present in
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Archimedes’s studies since they are either unstable or correspond
to the base being cut by the fluid surface.

Archimedes’s Results
Let us next summarize Archimedes’s results in Book II in

graphical form. In Figure 4 I have plotted a surface in (φ, s, θ)-
space in the region [0o, 90o]× [0, 1]× [0o, 180o] in which each point
identifies a combination of base angle, relative density, and tilt
angle for an AS equilibrium configuration of a paraboloid whose
base in not cut by the fluid surface. The bottom portion of this
equilibrium surface is associated with the base lying above the
fluid surface and the top portion with the base lying below the
fluid surface. Because of certain symmetry considerations6 the
top portion of the equilibrium surface is a rotation of its bottom
portion about the line s = 1/2 and θ = 90o.

The curved piece of the bottom portion of the equilibrium
surface, as partially determined by Archimedes’s Proposition 8
above, has the explicit equation
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θ = tan−1
√

2

3
(1−

√
s) tan2 φ− 2

restricted to the appropriate domain in φ and s. This curved
surface is delineated below by its intersection with the plane
θ = 0o and this delineation identifies those configurations in which
the paraboloid starts tilting from a vertical AS configuration.
The curved surface is delineated above by the bottom red curve
in Figure 4, which marks those configurations when the base
of the paraboloid touches the fluid surface at precisely one
point. In Proposition 10 of On Floating Bodies II, Archimedes
developed a complicated geometric construction to determine
these configurations. His geometric construction is so ingenious
as to warrant Cicero’s assessment of him as being “endowed with
greater genius that one would imagine it possible for a human being
to possess”.

In modern analytical notation Archimedes’s geometric construc-
tion for the bottom red curve is given by the following equations:

s =

(
6 + tan2 θ

6 + 5 tan2 θ

)4

, φ = tan−1

(
6 + 5 tan2 θ

4 tan θ

)
, 0o leqθ ≤ 90o,
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where at θ = 90o the limiting values s = 1/625 and φ = 90o are
taken.

For the upper surface corresponding equations can be obtained
by replacing s by 1− s by 180o − θ in Eqs. (3) and (4).

It should again be emphasized that Figure 4 and its analytical
descriptions in Eqs. (3) and (4) are quite alien to Greek
mathematics. As in the literal translation of Proposition 8,
Archimedes could only express his complete results in convoluted
sentences and complicated geometric constructions.

Complete Equilibrium Surface
My own research involved completing the equilibrium surface

in Figure 4 by appending those points corresponding to AS
configurations in which the base is cut by the fluid surface and also
all points corresponding to US and NS configurations. The result
is shown in Figure 5.

The construction of Figure 5 required determining all of the
roots of the righting arm curves for a large number of base angles
and relative densities using numerical techniques. The base angle
φ turned out to be a single-valued function of s in [0, 1] and φ in
(0o, 90o). I used this fact, together with the rotational symmetry, to
explicitly plot the surface. That is, rather than compute and plot θ as
a multiple-valued function of φ and s, I computed and plotted φ as
a single-valued function of s and θ for all s in [0, 1] and all θ other
than 0o, 90o, and 180o. For those three exceptional values of θ I used
the facts that (1) the entire planes θ = 0o and θ = 180o are part
of the equilibrium surface, indicating that the right paraboloid is
always in equilibrium when its axis of symmetry is vertical, and (2)
the cross section of the equilibrium surface at θ = 90o consists of the
three line segments { s = 1/2, θ = 90o}, where the paraboloid is on
its side half in and half out of the fluid; {φ = 0o, θ = 90o}, where the
paraboloid has collapsed to a circular disk; and {φ = 90o, θ = 90o},
where the paraboloid has collapsed to a line segment.

The curved portion of the equilibrium surface resembles three-
fourths of a turn of a helical surface, which is, appropriately enough,
also the shape of an Archimedes screw. However, the axis of the
helical surface is distorted. It is about this distorted axis, near the
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vertical line { φ = 74o, s = 1/2 }, that one finds up to seven distinct
values of the tilt angle for fixed values of φ and s and a variety of
complicated equilibria transitions.

The equilibrium surface is colored with the AS points in blue,
the US points in gray, and the NS points in black. The NS points lie
on one continuous curve that separates the equilibrium surface into
AS and US pieces. On the plane θ = 0o the curve of NS points has
the equation s = (13 cot2 φ)2 , which Archimedes had previously
identified as the limiting condition for a vertical stable equilibrium
(cf., Proposition 8). By symmetry, a similar curve lies on the plane
θ = 180o.

To determine the stability of each nonvertical equilibrium, I
determined the algebraic sign of the slope of the corresponding
righting curve at the corresponding root. When the fluid level does
not cut the base, Archimedes’s results are applicable. When the
base is cut by the fluid level, the algebraic sign can be determined
by computing the ratio of the two principal moments of inertia
of the cross section of the intersection of the paraboloid with the
fluid surface. The cross section in this case is a right segment of
an ellipse and I determined its principal moments of inertia using
exact formulas.

For base angles of less than 60o the right paraboloid has
the same floating characteristics as the spherical segment that
Archimedes studied in Book I: namely, for any relative density it
floats stably at the vertical tilt angles 0o and 180o and unstably at
a tilt angle close to 90o. I shall refer to this as plate-like behavior,
in contrast to the rod-like behavior when the base angle of the
paraboloid is close to 90o. In the latter case the paraboloid floats
unstably at 0o and 180o for most densities and floats stably at
a tilt angle close to 90o, when it is lying on its side. Because
plate-like and rod-like paraboloids float in totally different ways,
the transition between the two shapes produces a complicated
equilibrium surface with correspondingly complicated floating
behaviors.

The NS points on the curved portion of the equilibrium surface
lie along the edge of a helical fold that leads to catastrophic
transitions between two equilibria as the base angle and/or the
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relative density of the floating paraboloid changes. These NS points
identify saddle-node bifurcations where an US point and an AS
point meet and annihilate each other, forming a fold catastrophe.
If the parameters of a floating paraboloid change in such a way
as to pass over a fold, the equilibrium configuration will jump
catastrophically from the NS point on the fold to an AS point lying
on the vertical line through the NS point. The NS points on the
curved portion of the equilibrium surface and the corresponding
fold catastrophes arise only when the base of the paraboloid
is partially submerged and so did not enter into Archimedes’s
consideration.

Cusp Catastrophes, Bifurcations, and Hysteresis Loops
Figure 6(left) is a projection of a portion of the curve of fold

catastrophes onto the φs-plane. Although this curve is smooth
in three-dimensional space, its two-dimensional projection has
three cusps. These cusps identify three cusp catastrophes at
(φ, s, θ)- values of (74.19o, 0.467, 60.0o), (73.68o, 1/2, 90o), and
(74.19o, 0.533, 120.0o). These are points where the equilibrium
surface folds over and locally changes from a single- value function
of θ to a triple-valued function. Figure 6(right) is an oblique view
of the topmost cusp catastrophe illustrating this folding behavior.
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Within the diamond-shaped region in Figure 6(left) outlined on the
left by the three cusps, the equilibrium surface has seven tilt-angle
values, including two US values of 0o and 180o.

Figure 7 contains twelve slices of the equilibrium surface for
fixed values of the tilt angle, base angle, and relative density. These
slices exhibit the complicated geometric nature of the equilibrium
surface, which leads to complicated changes in the equilibrium
position of the paraboloid as its base angle or relative density
changes. Figures 7A to 7D illustrate the fact that is a single-
valued function of s for all θ between 0o and 180o other than 90o.
Figures 7E to 7H exhibit pitchfork bifurcations at θ equal to 0o and
180o and show the bifurcations associated with the passing of the
slice through the cusp catastrophe at a base angle of 73.682o ( =
tan1

√
35/3 ) between Figures 7E and 7F. In Figure 7G the slice

passes through the two cusp catastrophes at tilt angles of 60.0o and
120.0o producing two more pitchfork bifurcations.
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Figures 7I to 7L show passages through the three cusp
catastrophes using slices of constant relative density. Within
the slice at s = 1/2 (Fig. 7K) the cross-section of the cusp at
θ = 90o appears as a subcritical pitchfork bifurcation.

Small hysteresis loops appear in the s-slices for s between
0.467 and 0.500 associated with the cusp at θ = 60.0o and for
s between 0.500 and 0.533 associated with the cusp θ = 120.0o.
Figure 7J highlights the loop for s = 0.499. The paraboloid flips
catastrophically about this loop between the two orientations (a)
and (c) in a periodic manner as the base angle oscillates between
the values 73.8o and 74.4o, a change of only 0.6o. As the base
angle goes through one oscillation the tilt angle continuously
increases from 29.0o to 43.3o (a to b), then jumps to 89.6o (b to c),
then decreases continuously to 86.6o (c to d), and finally returns
catastrophically to 29.0o (d to a).

The vertical lines in Figures 7H and 7L are at s = 0.510 and
φ = 74.330o, respectively, and pass through the six tilt angles shown
in Figure 3. A slight increase in either the relative density or the
base angle from these values cause the structurally unstable NS
point at θ = 131.5o to be annihilated, while a slight decrease causes
it to split into an AS-US pair.

Tumbling of icebergs due to melting
Icebergs are notoriously unstable and may tumble over for

no apparent reason. Jules Verne gave an explanation of this
phenomenon in his 1870 novel 20,000 Leagues Under the Sea.
After a tumbling iceberg strikes the Nautilus, Captain Nemo
explains, “An enormous block of ice; a mountain turned over.
When icebergs are undermined by warmer waters or by repeated
collisions, their center of gravity rises, with the result that they
overturn completely”.

Figure 8 quantifies this phenomenon for a paraboloidal iceberg
with uniform relative density of 0.9 melting in such a way that
its base angle slowly increases (i.e., it gets narrower9). The cross-
section of the equilibrium surface at this relative density shows that
for base angles less that 82.54o the iceberg can float stably in a
vertical orientation with its base above water (a). As its base angle
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slowly melts from 82.54o to 82.65o, its tilt angle slowly increases
from 0o to 12.3o (a to b), and then suffers a catastrophic jump to
98.1o when the base angle increases past 82.65o (b to c).

The paraboloidal iceberg will tumble, rather than gradually roll
over, only if its relative density is greater than 0.467 (Figures 8I
and 8J). The tumbling then takes place almost immediately after
the base cuts the fluid surface.

Toppling of structures due to soil liquefaction
During an earthquake loose, water-saturated soil can behave like

a viscous fluid, a phenomenon known as soil liquefaction. Structures
originally supported by the soil begin to float on it when it liquefies
and can then sink and topple as the density of the liquefied soil
decreases.
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Figure 9 illustrates this phenomenon for a paraboloidal
structure with a base angle of 80o initially standing vertically
on solid ground at a tilt angle of 180o (a). Let us consider solid
ground as a liquid with infinite density, so that the relative density
of the structure is zero. As the ground liquefies its density slowly
decreases from infinity through large finite values and the relative
density of the structure increases from zero through small finite
values. The cross-section of the equilibrium surface at a base angle
of 80o shows that as the relative density of the structure increases
from 0 to 0.177 the structure slowly sinks into the ground in a
vertical position (a to b), then starts to slowly tilt until it reaches
a tilt angle of 162.6o at a relative density of 0.187 (b to c), at
which point its base is barely above ground. If the relative density
increases further, the structure topples catastrophically to a tilt
angle of 79.9o (c to d). This toppling is irreversible. If the soil
returns to its solid state, the structure, if still in one piece, ends
up at a tilt angle of 77.2o (d to e).

As with the iceberg, the paraboloidal structure cannot topple
until its base is partially exposed above the soil level. Additionally,
this toppling can only occur if the base angle of the structure is
greater that 74.194o (cf., Fig. 7G). For smaller base angles the
paraboloidal structure gradually sinks and tilts into the soil without
toppling as the soil’s density decreases.

Conclusion
One needs only glance at Archimedes’s Proposition 8 above to

see that On Floating Bodies is several orders of magnitude more
sophisticated than anything else found in ancient mathematics. It
ranks with Newton’s Principia Mathematica as a work in which
basic physical laws are both formulated and accompanied by superb
applications.

However, Archimedes’s investigation of floating paraboloids
had to await the computer age for its continuation, just as did
his famous Cattle Problem. This latter problem has an integer
solution with more than 200,000 digits that needed modern
computers to determine. Likewise, I needed advanced computing
and graphics systems to determine all possible equilibrium positions
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of Archimedes’s floating paraboloids and to represent them in a
single diagram.

No doubt Archimedes would have been interested in seeing
the results in this paper, but one could ask how much of the
mathematics developed in the last two millennia he would need
to learn to understand them. At the very least he would have
to learn about three-dimensional Cartesian coordinate systems,
although he should have no trouble with this concept considering
how close he came to defining a polar-coordinate system in his
description of the spiral that bears his name. Unhooking him from
the straitjacket of compass-and-straightedge construction to explain
how the relationship among three variables can be represented by
the points on a surface might take a little longer. He could then see
how the equilibrium surface in Figure 5 presents a global picture
of the behavior of his floating paraboloids and how the twists and
turns of that surface lead to catastrophic transitions. He could also
then appreciate some of the advances made in mathematics in the
last 23 centuries, although my guess is that he would have expected
more considering the enormous advances that he alone made in his
lifetime.
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Notes
1. A Greek manuscript dating from about the ninth century and

containing both books of On Floating Bodies was translated
into Latin by the Flemish Dominican William of Moerbeke
in 1269, along with other works of Archimedes from other
manuscripts. The tracks of the Greek manuscript were lost
in the fourteenth century, but Moerbeke’s holograph remains
intact in the Vatican library (Codex Ottobonianus Latinus
1850). Moerbeke’s Latin translation was the source of all
versions of On Floating Bodies from his time until the
twentieth century. Moerbeke’s translation of both books of
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On Floating Bodies was first printed in 1565, independently
by Curtius Troianus in Venice and by Federigo Commandino
in Bologna. A palimpsest from the tenth century, discovered
and edited by J. L. Heiberg in 1906, contains the only extant
Greek text. The texts by Dijksterhuis and Heath are the only
translations/paraphrases presently available in English.

2. Also called parabolic conoids or orthoconoids.
3. Some classic works concerned with how things float are:

Christiaan Huygens (Dutch, 1629-1695), De iis quae liquido
supernatant; Pierre Bouguer (French, 1698-1758), Traite du
Navire, de sa Construction, et de ses Mouvements; Leonhard
Euler (Swiss, 1707-1783), Scientia navalis; Jean Le Rond
d’Alembert (French, 1717-1783), Traite de l’equilibre et
du Mouvement des Fluide; Fredrik Henrik af Chapman
(Swedish, 1721- 1808), Architectura Navalis Mercatoria;
George Atwood (English, 1745- 1807); The Construction
and Analysis of Geometrical Propositions Determining the
Positions Assumed by Homogeneal Bodies Which Float
Freely, and at Rest, on the Fluid’s Surface; also Determining
the Stability of Ships and of Other Floating Bodies; Pierre
Dupin (French, 1784-1873), Applications de geometrie et de
mecanique; August Yulevich Davidov (Russian, 1823-1885);
The Theory of Equilibrium of Bodies Immersed in a Liquid
[in Russian]. More recent works include.

4. If air is the mass-density of the air, then, because the
paraboloid is a homogeneous convex body, the buoyancy
effect of the air can be accounted for by defining the relative
density as s = (ρbody − ρair)/(ρfluid − ρair). Actually,
Archimedes’s description of s as the ratio of the weight of the
body to the weight of an equal volume of fluid results in this
expression if the weighing is done in air, but it is doubtful
that he was aware of the buoyancy effects of air.

5. Archimedes’s proof for the volume of a right or oblique
paraboloid is contained in Propositions 21-22 of On Conoids
and Spheroids. He gave a ‘mechanical’ proof of the location
of the centroid of a right paraboloid in Proposition 5 of The
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Method. He used the correct expression for the centroid of
an oblique paraboloid in On Floating Bodies II, but no proof
survives.

6. Symmetry considerations show that if θ is an equilibrium
tilt angle when the relative density of a floating body of
revolution is s, then 180o − θ is an equilibrium tilt angle for
the body when its relative density is 1˘s. Thus only tilt angles
in the range [0o, 90o] need be explicitly computed. Although
Archimedes does not mention this fact, it is clear that he was
aware of it for his paraboloids since his proofs when the base
is below the fluid surface are the same, mutatis mutandis, as
his proofs when the base is above the fluid surface.

7. The integrals determining the volume and centroids of
the unsubmerged portion can be found in closed form
using symbolic algebra programs, but they are page-long
monstrosities and numerical integration yields results much
quicker and with more accuracy. Additionally, numerical
techniques were used to determine when the weight of the
displaced fluid is equal to the weight of the paraboloid
and to find the roots of the righting arm curve. The
symbolic calculations were performed with MapleTM and
MathematicaTM and the numerical calculations and graphs
were performed with MatLabTM.

8. Points NS to first order may be AS or US when higher-order
terms are considered. In particular, the NS points when θ =
0o and 180o are actually AS and the rest are US. These NS
points are also classified as nonhyperbolic, degenerate, and
structurally unstable .

9. Unlike Verne’s iceberg, the center of gravity of the paraboloidal
iceberg remains fixed relative to its size at a distance of one-
third of its height along its axis from its base.

10. In Greek: CATASTROPHE = KATAΣTPOΦH = a
downward turn

210



Exercises

1. In the text, translate the sentences italicized.

2. Insert prepostions and translate the following:
to lead ... smth, due ... smth, parallel ... smth, ... the interim,

to extend analysis ... smth ... smth, bounded ... smth, to rotate a
parabola ... its axis, perpendicular ... smth, ... the interval, ... the
line, ... the plane, ... Figure 3, ... particular, to multiply smth ...
smth, to be equal ... smth, stable ... first order, to pass ... a point, to
restrict smth ... smth, to replace smth ... smth, projection of smth
... smth, to date ... the ninth century, to translate ... one language
... another language, ratio of smth ... smth, to correspond ... smth.

3. What do the abbreviations BC, c. (e.g. in c. 287 BC), cf.,
i.e. stand for?

4. Give the English equivalents of the following:
1) подробное исследование
2) (не)устойчивое положение равновесия
3) сложный случай
4) вывод закона плавучести
5) однородное тело
6) ввести понятие давления
7) определить вес вытесненной жидкости
8) точно определить цель исследования
9) касательная к кривой
10) однородное гравитационное поле
11) отрезок прямой
12) достаточно малый
13) меньше (больше), чем
14) значительно изменять
15) соответствующие значения угла
16) численные методы
17) вращать против часовой стрелки
18) приравнивать к нулю
19) в частности

211



20) по аналогии
21) безразмерные единицы
22) в силу симметрии
23) под углом 90o к
24) необратимый процесс
25) декартова система координат
26) явление может быть объяснено с помощью
27) интегралы в явном виде можно найти
28) давать результаты с большей точностью
29) тело вращения
30) проводить вычисления с помощью

5. Use your dictionary to check the pronunciation and stress of
the words below:

either, catastrophic, catastrophe, surface, buoyancy, hydrostatics,
architect, oblique, height, tangent, ratio, determine, compass,
infinite, lever, finite, technique, coordinate (v., n.), ingenious,
helical, ellipse, characteristic, annihilate, exhibit, occur, doubt,
guess, homogeneous, yield, hyperbolic, degenerate (adj.).

6. What are the plural forms of the following nouns? Use a
dictionary.

Equilibrium, phenomenon, formula, axis, hysteresis, millenium.

7. Make up your own sentences with the following words:
up to the time, to carry out an investigation, to do research, to

extend analysis from ... to, to let smth be smth, to define smth as
smth, to make some angle with, our objective is to ... , respectively,
to take place, to be concerned with.

8. Read the quotations below and answer the questions.
Aristotle (384-22 BC), Greek natural philosopher.
The same ideas, one must believe, recur in men’s minds not once

or twice but again and again.
1. Could you give any examples from the history of sciences?
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Jean Baptiste Joseph Fourier (1768-1830), French mathema-
tician and physicist.

Profound study of nature is the most fertile source of
mathematical discoveries.

2. Could you say what Fourier’s results may have originated
from nature?

3. Give other examples of natural phenomena that led to
profound mathematical results.

4. Give examples of the opposite situation when pure mathematics
is applied to explain facts from nature.
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XIX. Appendix

I. Poems

Math Class Limericks

Marion Cohen, The Mathematical Intelligencer, volume 21,
number 4, Winter 1999, p. 3.

We are algebra-shy nincompoops.
We can’t get a grip on our groups.
We ask in a frenzy,
Is it Zn or nZ?
We guess wrong, so we grin and go Oooops.

(God to Kronecker)
For seven long days labored I
making integers, low and then high.
But now ’tis day eight.
It is time to create
the fractions and square roots and π.

(God’s last word to Kronecker)
I couldn’t see stopping at 10.
Then I couldn’t see stopping at n.
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Then Z and then Q
and the square root of 2,
but I’m stopping with C. Amen.

Ode to Andrew Wiles, KBE
By Tom M. Apostol, The Mathematical Intelligencer, volume

22, number 4, Fall 2000, p. 36.

Fermat’s famous scribble - as marginal note -
Launched thousands of efforts - too many to quote.
Anyone armed with a few facts mathematical
Can settle the problem when it’s only quadratical.
Pythagoras gets credit as first to produce
The theorem on the square of the hypotenuse.

Euler’s attempts to take care of the cubics
Might have had more success if devoted to Rubik’s.
Sophie Germain then entered the race
With a handful of primes that were in the first case.

Lame at mid-century proudly announced
That the Fermat problem was finally trounced.
But the very same year a letter from Kummer
Revealed the attempt by Lame was a bummer.

Regular primes and Kummer’s ideals
Brought new momentum to fast-spinning wheels.
Huge prizes were offered, and many shed tears
When a thousand false proofs appeared in four years.
The high-speed computers tried more and more samples,
But no one could find any counterexamples.

In June ’93 Andrew Wiles laid claim
To a proof that would bring him fortune and fame.
But, alas, it was flawed - he seemed to be stuck -
When new inspiration suddenly struck.
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The flaw was removed with a change of approach,
And now his new proof is beyond all reproach.
The Queen of England has dubbed him a Knight
For being the first to show Fermat was right.

The Königsberg Bridge Poem
Homage to Euler

By Judith Saunders, The Mathematical Intelligencer, volume
19, number 4, Fall 1997, p. 20.

Flowing through Königsberg and spanned by seven bridges, the
River Pregel surrounds an island (called Kneiphof) in the middle
of the city. It is said that people used to entertain themselves by
trying to devise a route around Königsberg which would cross each
bridge just once.

Like mice in mazes, locals scampered forth
and back, around and through the town, traversed
and re-traversed the central island, bent
on crossing each of seven bridges once
and only once.
You alone declined
to join the briskly questing citizenry.
Knowing the elusive route would not
be found on foot, in chance meandering
(some providential Spaziergang)
you proceeded without stirring from
your chair to take a different sort of trip.

With pen and paper first you razed the place,
demolished houses, Marktplatz, terraces
and domes. You rid it of shrubbery and trees.
Walls fell. Cathedrals crumbled. Squirrels, ducks
and hedgehogs vanished. Not a lamppost was spared,
not a Denkmal stood. No cobblestone escaped
your ruthlessly obliterating hand.
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And when you’d sheared away particulars,
trimmed Königsberg to the bone, you saw
a skein of penstrokes, luminous patterns
of points and lines, necessary sequences:
where trails of connectivity led, and where
they failed, and why – no matter time or place,
terrain or weather.
Ineluctably
you built and crossed a single, Ideal Bridge
to reach a quiet Kneiphof of the mind,
an island of essences. Stripped stark. Clean.
Bare bedrock of a new geometry.

V(n) = V(n-V(n-1)) + V(n-V(n-4))

Kelie O’Connor Gutman, The Mathematical Intelligencer,
volume 23, number 3, summer 2001, pp. 50

Recalling a Collaboration with Greg Huber and Doug Hofstadter

And now, my friends, in poetry,
The lowdown on the function V,
Which calls itself recursively.
My verse will mirror it, you’ll see.
The code pertains to how it rhymes
In trios, couplets, singletons -
But that we’ll save until the end.
Let’s start with all those dense parens
And minus-signs and V’s and n’s
That make my title hard to sing.
V’s formula (which yields a string
Akin to Fibonacci’s sequence)
Says “Add two prior values found
To get the next - thus, round and round,”
But V demands that one look back
To distant spots along its track.
To find those places that one visits,
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Step back by one and back by four -
But do not add these, I implore,
As Fibonacci might; there’s more.
These merely serve as indices
For two more countbacks, if you please,
That yield two summands for your summing.
A short example would be great,
So here’s V’s startup - one through eight:
1, 1, 1, 1, 2, 3, 4, 5;
It’s V(9) we’ll now derive.
All set? Let’s get those brain cells buzzing!
Replace the n’s by 9; subtract
To get first 8, then 5. Extract
V’s values at those spots exact.
Thus V at 5 delivers 2,
Whilst V at 8 gives 5. Now you
Must do a wee bit more subtracting.
So take these indices from 9 -
Get 4 and 7. These define
The spots in V that we must add.
Take V(4) - this won’t be bad - Our table tells us it’s a 1,
While V(7)’s 4 - well done!
We’re nearly finished with our run,
For V(9) (towards which we strive)
Is 4 + 1 (their sum) - thus 5.
I’m sure that wasn’t too demanding.
A question now to contemplate:
What makes this function captivate
The few who’ve tarried in its thrall?
Well, first of all, from something small,
A sequence starts that never ends.
Surprisingly, as V extends,
It hits each number in succession
And never ever skips a beat
While marching up its one-way street,
With no looks back and no retreat.
A visit to each number’s paid,

218



With ne’er the welcome overstayed.
Aside from four 1’s at the start-up,
Each number’s tapped three times at most,
And gets, as said, at least one toast.
V’s charm lies in its wondrous mix
Of ordered chaos, as it clicks
Its way along the number line.
No pattern’s clear in its design,
Yet hidden truths are there to mine.
A different way to look at V -
Through groups of length 1, 2, or 3 -
Involves observing repetitions.
If there’s a value that’s dunned thrice
Successively (or once, or twice),
We say a “clump” is there, size 3
(Or 1, or 2, respectively).
The list of clumps shows how V duns
The integers, with 3’s, 2’s, 1’s.
Transitions give another viewpoint;
They show just how the numbers climb -
At most two jumps come at one time,
And then, plateau. It’s quite sublime!
Thus, novel views of V’s quaint bumps
We gain by listing climbs and clumps -
I.e., two complement’ry ways
With which upon V’s path to gaze.
Oh, V both baffles and unites
Those few of us who’ve set our sights
On understanding its delights.
P.S. - For those who’d like to see
A longer stretch of sequence V,
Within this poem I’ve encrypted
The list of clumps for you to find.
I’ll help at first, if you don’t mind.
The first four rhymes - jot down a “4” ;
That digit you will see no more.
And next we have an unrhymed run,
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For those three lines write “1, 1, 1”.
The rest is readily decoded:
When three lines rhyme (like these), write “3” ;
Write “2” for couplets; finally,
Write “1” for rhymeless lines. Let’s see:
4, 1, 1, 1, 2, 2, 1, 2. . . -
My poem’s rhyme scheme. Now go through
The clumps, translating; I’ll assist.
4 ones, 1 two, 1 three. . . - the list
That’s on line twenty-six! This sequence
In fact gives back V’s funky grace,
A lovely gem in function space.

II. A Deprogrammer’s Tale

A Deprogrammer’s Tale
Colin Adams, The Mathematical Intelligencer, Volume 23, No.

4 (Fall 2001), pp. 13-14.

They hooked him in calculus class. Started slow. Didn’t want
to be too obvious. Gave him a little trig review, some functional
notation, and then introduced limits. Gave him lots of problems to
work. Kept him busy to get his guard down. Then pow, hit him
with the concept of the derivative. The raw power and simplicity
of the idea, it was overwhelming. How could he resist? Who can?
I know. I’ve been through it myself. Yes, that’s right. I was one of
them once. I was a slave to mathematics.

But unlike most, I escaped. And now my life is dedicated to
helping others who were not as fortunate as I.

In this particular case, I was hired by the parents of one
Lawrence Desenex. One minute, Larry was pre-med, heading for
a lucrative plastic surgery practice in Cherry Hill, and the next
minute he was talking about earning a Ph.D. in mathematics. All
thought of financial gain went out the window. His parents were
horrified. Dreams of my-son-the-doctor turned into nightmares of
my-son-the-itinerant-mathematician. But me, I wasn’t surprised
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when I heard the tale. I’d heard it a hundred times before. Believe
it or not, 1200 people a year get Ph.D.s in math in the United
States alone. That sounds incredible, but I understand why; I know
the seductive power of a beautiful proof, the appeal of a well-turned
lemma. Larry had fallen prey in the usual manner. After hearing
the derivative explained in a lecture hall with 300 other students,
he went to see the professor during office hours. That’s when they
know they have you. You’re one of the susceptible ones, looking
for some meaning beyond the plug and chug problems.

A little chitchat, maybe notational, a bit of history, Newton
verses Leibnitz, that sort of thing, all seemingly innocuous. And
then, when he least expected it, the epsilon delta definition of a
continuous function. Poor guy was putty in the professor’s hands.
Before he could get his head back on straight, the professor invited
him to a departmental colloquium, followed by tea. Larry dutifully
went, and although he was blown out of the water by the material,
he saw the others there, at rapt attention, and he felt he was among
friends.

At tea, the department members ignored Larry, feigning
indifference to the freshman who was interested in math, pretending
they were too wrapped up in their own research to care. But oh,
if he only knew. They were watching his every move, as they
scribbled on the blackboard and talked about this theorem or that
with their colleagues. He was a marked man, and Larry didn’t even
know it.

In cases like these, there is a small window of opportunity, a
short period when a student can yet be saved. But you must act
fast. Once students take Real Analysis and Abstract Algebra, their
fate is sealed. The window has been slammed shut and shuttered.

But Larry’s parents had called me in time. He was taking Linear
Algebra, the applied version. There was hope yet.

I found him in the cafeteria with an untouched plate of tuna
casserole and a copy of The Man Who Loved Only Numbers open
in front of him. I gave him my winningest smile.

“Erdös, huh? Mind if I join you?”
He was clearly impressed and motioned to the seat across the

table.
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“Like math, do you?” , I asked.
“Oh, yes,” he said enthusiastically. “It’s so beautiful.”
“Yes, it does have an appeal.”
“Have you ever seen the argument for the uncountability of the

reals?”, he asked. “That’s really cool.” The bubbly excitement, the
glassy bright eyes. Oh, he was in deep. We talked math for a while.
I played along. Euclid this, Euler that. Then I laid the trap.

“Hey, my roommate and I are having a birthday celebration
for Karl Friedrich Gauss on Wednesday at my apartment. You’re
invited.”

Of course, he was thrilled. Susceptible and trusting are two
descriptions of the same attribute.

He showed up right on time. It hadn’t taken him long to pick
up that characteristic of mathematicians. I let him in and locked
the door behind him. Then everyone popped out, his parents, his
grandparents, a cousin, an aunt, his best friend from high school.

“What’s going on here?” he said, clearly at a loss. “This isn’t a
birthday party for Gauss.”

“No, it’s not,” I said. “Gauss was born in April. This is an
intervention, Larry. These are the people who love you and they’re
here to help.” He backed away.

“Open the door. Let me go,” he cried desperately. I blocked him.
“Not until you hear what we have to say.”
He looked like Galois after the duel. The blood drained from his

face. Must have been wondering where his muse was now.
His mother spoke first. “Bunchkins, bunchkins, have you thought

about us? We love you, Pinchy, but good gracious, what would the
neighbors say? Mrs. Krawlick would revel in the news. Our son, a
mathema, a mathema. . . , I can’t say the word.”

She began to bawl uncontrollably. Larry’s father held her. “Look
at your mother. Look at what you are doing to her. She can’t even
say the word.”

“Poor, poor Erma,” said his aunt, patting Larry’s mother on
the sleeve. “Larry, I can’t believe you would do this. You seemed
like you were a good kid. You used to watch television. You had a
lemonade stand. What happened to you? My kids would never do
this. Evan here, now, he is a dentist, aren’t you Evan?”

222



The cousin nodded yes.
“And Cybil works in marketing for an ad agency. And I am

proud of them both!”
“What about Karen?” asked Larry.
The aunt turned bright red. “How dare you mention her name

in my presence.”
Evan laughed. “Karen has a masters degree in accounting.” Not

my area, but I sympathized.
Larry’s best friend spoke up. “Listen, Larry. The problem is,

it’s not cool to do math. Business degrees, they’re cool. You know,
Internet start-ups and all. Theater degrees, that’s cool. You wear
black clothes and talk about Pinter. But math? It’s not cool.
Nothing is cool until everyone is doing it.”

Larry wrung his hands.
“You don’t understand. I don’t have a choice. I am not choosing

to do mathematics. Math has chosen me. When I saw that epsilon
delta definition of continuity, it was like I had known it all my life.
Here is what the professor was really talking about when he drew
all these pictures. This is rigorous definition. It felt so good. It’s
not up to me anymore.”

“Look, Larry,” I said. “Do you want this to be you?” I showed
him the pictures of mathematicians, the addicts with their white
pallor from sitting under fluorescent lights for years at a time. Some
were barely able to lift their eyes from the books in front of them as
the camera clicked away. Their clothes, stained with coffee, made
it clear they were unaware that fashion was an evolving concept.

But he was unmoved. “That’s exactly what I want to be,” he
said.

I sighed. “Okay, Larry, I have no choice.” I strapped him into the
Barcolounger and turned on the TV. I kept him there for two weeks;
mostly reruns of “Brady Bunch” and “Welcome Back Kotter.” By
the time we were done, spittle dripped from the side of his mouth.
His brain had been washed clean. Unfortunately, it had been washed
so clean that medical school was no longer an option. Larry did go
to a successful career with Seven Eleven, primarily mopping up the
slushy spills at the Cherry Hill store. And I know that he’s happier
for it.

223



But Larry’s story is just one among many. These dangers are
real. Do you know where your children are? Are you sure they are
watching TV, and not sitting in on a seminar, or leafing through a
math text?

If we are vigilant, we can prevent mathematics from spreading
any further. But we will need to fight the minions of mathematics at
every turn. We will need the entertainment industry to continue to
hype over intellectual curiosity. We will need to inundate children
with the belief that being good at math is something to be ashamed
of. We will need to convince that there is nothing wrong with
mathematical illiteracy. So far, so good.

III. Graffiti

Edward Burger, The Mathematical Intelligencer, Vol. 20,
Number 2, Spring 1998, p. 60.

Graffiti provide a window into the soul of their creator. Given
this observation, I was unable to contain my smile upon viewing
the above graffiti on the outside wall of a building in Austin, Texas,
back in the summer of 1987. On this tenth anniversary, I wish to
celebrate the work of this wall artist and its wonderful hidden life
lessons.

* Getting the person-on-the-street to take a look at mathematics.
Certainly the artist’s desire to deface property is only exceeded
by the artist’s passion for mathematics. In the eyes of our wall
painter, mathematics is worthy of the attention of the masses.
This enthusiasm must have been the impulse for the artist to move
beyond scribbling math on napkins to spray painting math on walls.
Wouldn’t it be great if more mathematicians would actively share
their passion for mathematics with the world at large?

* Shaking well before the final coat. Our wall artist embarks
upon a problem without advance knowledge of how the issue would
be resolved. Of course new discoveries are only made after numerous
failed attempts. Our painter has a firm grasp on both the spray can
and the power of trying without fear of failing. Wouldn’t it be great
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if more teachers would inspire their students to be brave enough to
experiment (and even fail)?

* Reveling in the shock factor.WHOOPS! The artist shares with
the onlooker the surprise of the realization that the problem at hand
was more challenging than first thought. Our wall painter is rather
mathematically mature: instead of defacing the wall with a solution
known to be wrong, the painter eagerly admits to all that the line
of attack did not pan out. Wouldn’t it be great if more students
would be strong enough to curb the powerful temptation to record
an answer they know to be incorrect for the sole purpose of writing
something down?

* Hitting the brick wall. The wall artist has one of the key
ingredients to succeed in mathematics: tenacity. Our painter does
not give up or become frustrated when faced with a mathematical
impasse. Rather than a typical more colorful epithet, we see
the thoughtful proclamation that further insights are required.
Wouldn’t it be great if more people had a sense that the journey
through mathematics is an ongoing one through the uncharted
reaches of thought?

* Painting new pictures. As all great mathematics should, the
artist’s work leads us to ponder new and interesting questions.
Suppose we define the graffiti curve to be

y4 + 18− 16 · 16 = 0.

Can you show that there are no integer points on this curve? Are
there any rational points on the graffiti curve? Wouldn’t it be great
if each piece of mathematics displayed would inspire one person to
ask one new question?

Where is our graffiti artist today? Perhaps the wall painter is
now an algebraic geometer at some university or serving time at
some other institution. In either case, the painter accomplished
something truly spectacular: all who walked by that building, for
one brief moment, tried to factor a polynomial.

In the best of all possible worlds, this writing on the wall would
have remained to inspire interesting thoughts and conversations
among generations of both math fans and math foes. Sadly, this is
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not the best of all possible worlds. I took this photograph early one
Sunday morning. To my surprise, three days later the brick wall was
completely painted over with light blue paint to cover the graffiti.
That garish blue color covers the entire side of the building to this
very day. As people stroll by the wall today, they are unaware of
the buried treasure which they pass.

IV. Mathematical Jokes

1. Definitions
Let’s start with general definitions.

Mathematics is made of 50 percent formulas, 50 percent proofs,
and 50 percent imagination.

An engineer thinks that his equations are an approximation
to reality. A physicist thinks reality is an approximation to his
equations. A mathematician doesn’t care.

Mathematicians are like Frenchmen: whatever you say to them,
they translate it into their own language, and forthwith it means
something entirely different. (Goethe)

Mathematics is the art of giving the same name to different
things. – J. H. Poincare

A topologist is a person who doesn’t know the difference
between a coffee cup and a doughnut.

A law of conservation of difficulties: there is no easy way to
prove a deep result.

A tragedy of mathematics is a beautiful conjecture ruined by
an ugly fact.

Philosophy is a game with objectives and no rules.
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Mathematics is a game with rules and no objectives.

Math is like love; a simple idea, but it can get complicated.

Mathematics is like checkers in being suitable for the young, not
too difficult, amusing, and without peril to the state. (Plato)

Math is the language God used to write the universe.

A mathematician, a physicist, an engineer went again to the
races and laid their money down. Commiserating in the bar after
the race, the engineer says, “I don’t understand why I lost all my
money. I measured all the horses and calculated their strength and
mechanical advantage and figured out how fast they could run...”

The physicist interrupted him: “...but you didn’t take individual
variations into account. I did a statistical analysis of their previous
performances and bet on the horses with the highest probability of
winning...”

“...so if you’re so hot why are you broke?” asked the engineer.
But before the argument can grow, the mathematician takes out his
pipe and they get a glimpse of his well-fattened wallet. Obviously
here was a man who knows something about horses. They both
demanded to know his secret.

“Well,” he says, “first I assumed all the horses were identical and
spherical...”

An engineer, a physicist and a mathematician are staying in a
hotel.

The engineer wakes up and smells smoke. He goes out into the
hallway and sees a fire, so he fills a trash can from his room with
water and douses the fire. He goes back to bed.

Later, the physicist wakes up and smells smoke. He opens his
door and sees a fire in the hallway. He walks down the hall to a
fire hose and after calculating the flame velocity, distance, water
pressure, trajectory, etc., extinguishes the fire with the minimum
amount of water and energy needed.
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Later, the mathematician wakes up and smells smoke. He goes
to the hall, sees the fire and then the fire hose. He thinks for a
moment and then exclaims, “Ah, a solution exists!” and then goes
back to bed.

A physicist and a mathematician are sitting in a faculty lounge.
Suddenly, the coffee machine catches on fire. The physicist grabs
a bucket and leaps towards the sink, fills the bucket with water
and puts out the fire. Second day, the same two sit in the same
lounge. Again, the coffee machine catches on fire. This time, the
mathematician stands up, gets a bucket, hands the bucket to the
physicist, thus reducing the problem to a previously solved one.

A biologist, a physicist and a mathematician were sitting in
a street cafe watching the crowd. Across the street they saw a
man and a woman entering a building. Ten minutes later they
reappeared together with a third person.

“They have multiplied,” said the biologist.
“Oh no, an error in measurement,” the physicist sighed.
“If exactly one person enters the building now, it will be empty

again,” the mathematician concluded.

A mathematician is asked to design a table. He first designs a
table with no legs. Then he designs a table with infinitely many
legs. He spends the rest of his life generalizing the results for the
table with N legs (where N is not necessarily a natural number).

A mathematician, a physicist, and an engineer were traveling
through Scotland when they saw a black sheep through the window
of the train.

“Aha,” says the engineer, “I see that Scottish sheep are black.”
“Hmm,” says the physicist, “You mean that some Scottish sheep

are black.”
“No,” says the mathematician, “All we know is that there is at

least one sheep in Scotland, and that at least one side of that one
sheep is black!”
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A mathematician, scientist, and engineer are each asked:
“Suppose we define a horse’s tail to be a leg. How many legs does a
horse have?” The mathematician answers “5”; the scientist “1”; and
the engineer says, “But you can’t do that!”

A mathematician, a physicist, and an engineer are all given
identical rubber balls and told to find the volume. They are given
anything they want to measure it, and have all the time they need.
The mathematician pulls out a measuring tape and records the
circumference. He then divides by two times pi to get the radius,
cubes that, multiplies by pi again, and then multiplies by four-thirds
and thereby calculates the volume. The physicist gets a bucket of
water, places 1.00000 gallons of water in the bucket, drops in the
ball, and measures the displacement to six significant figures. And
the engineer? He writes down the serial number of the ball, and
looks it up.

A Mathematician (M) and an Engineer (E) attend a lecture
by a Physicist. The topic concerns Kulza-Klein theories involving
physical processes that occur in spaces with dimensions of 9, 12 and
even higher. The M is sitting, clearly enjoying the lecture, while the
E is frowning and looking generally confused and puzzled. By the
end the E has a terrible headache. At the end, the M comments
about the wonderful lecture.

E: “How do you understand this stuff?”
M: “I just visualize the process.”
E: “How can you POSSIBLY visualize something that occurs in

9-dimensional space?”
M: “Easy, first visualize it in N-dimensional space, then let N

go to 9.”

A team of engineers were required to measure the height of a
flag pole. They only had a measuring tape, and were getting quite
frustrated trying to keep the tape along the pole. It kept falling
down, etc. A mathematician comes along, finds out their problem,
and proceeds to remove the pole from the ground and measure it
easily. When he leaves, one engineer says to the other: “Just like a
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mathematician! We need to know the height, and he gives us the
length!”

A mathematician and a physicist agree to a psychological
experiment. The (hungry) mathematician is put in a chair in a
large empty room and his favorite meal, perfectly prepared, is
placed at the other end of the room. The psychologist explains,
“You are to remain in your chair. Every minute, I will move your
chair to a position halfway between its current location and the
meal.” The mathematician looks at the psychologist in disgust.
“What? I’m not going to go through this. You know I’ll never reach
the food!” And he gets up and storms out. The psychologist ushers
the physicist in. He explains the situation, and the physicist’s eyes
light up and he starts drooling. The psychologist is a bit confused.
“Don’t you realize that you’ll never reach the food?” T he physicist
smiles and replies: “Of course! But I’ll get close enough for all
practical purposes!”

One day a farmer called up an engineer, a physicist, and a
mathematician and asked them to fence of the largest possible area
with the least amount of fence.

The engineer made the fence in a circle and proclaimed that he
had the most efficient design.

The physicist made a long, straight line and proclaimed “We
can assume the length is infinite...” and pointed out that fencing
off half of the Earth was certainly a more efficient way to do it.

The Mathematician just laughed at them. He built a tiny fence
around himself and said “I declare myself to be on the outside.”

The physicist and the engineer are in a hot-air balloon. Soon,
they find themselves lost in a canyon somewhere. They yell out for
help: “Helllloooooo! Where are we?”

15 minutes later, they hear an echoing voice: “Helllloooooo!
You’re in a hot-air balloon!!”

The physicist says, “That must have been a mathematician.”
The engineer asks, “Why do you say that?”
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The physicist replied: “The answer was absolutely correct, and
it was utterly useless.”

Several scientists were asked to prove that all odd integers higher
than 2 are prime.

Mathematician: 3 is a prime, 5 is a prime, 7 is a prime, and by
induction - every odd integer higher than 2 is a prime.

Physicist: 3 is a prime, 5 is a prime, 7 is a prime, 9 is an
experimental error, 11 is a prime. Just to be sure, try several
randomly chosen numbers: 17 is a prime, 23 is a prime...

Engineer: 3 is a prime, 5 is a prime, 7 is a prime, 9 is an
approximation to a prime, 11 is a prime,...

Programmer (reading the output on the screen): 3 is a prime, 3
is a prime, 3 a is prime, 3 is a prime....

Biologist: 3 is a prime, 5 is a prime, 7 is a prime, 9 – results
have not arrived yet,...

Psychologist: 3 is a prime, 5 is a prime, 7 is a prime, 9 is a prime
but tries to suppress it,...

Chemist (or Dan Quayle): What’s a prime?
Politician: “Some numbers are prime.. but the goal is to create

a kinder, gentler society where all numbers are prime... ”
Programmer: “Wait a minute, I think I have an algorithm from

Knuth on finding prime numbers... just a little bit longer, I’ve found
the last bug... no, that’s not it... ya know, I think there may be a
compiler bug here - oh, did you want IEEE-998.0334 rounding or
not? - was that in the spec? - hold on, I’ve almost got it - I was up
all night working on this program, ya know... now if management
would just get me that new workstation that just came out, I’d be
done by now... etc., etc. ...”

(Two is the oddest prime of all, because it’s the only one that’s
even!)

Dean, to the physics department. “Why do I always have to give
you guys so much money, for laboratories and expensive equipment
and stuff. Why couldn’t you be like the math. department - all they
need is money for pencils, paper and waste-paper baskets. Or even
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better, like the philosophy department. All they need are pencils
and paper.”

New York (CNN). At John F. Kennedy International Airport
today, a high school mathematics teacher was arrested trying to
board a flight while in possession of a compass, a protractor and
a graphical calculator. According to law enforcement officials, he is
believed to have ties to the Al-Gebra network. He will be charged
with carrying weapons of math instruction. It was later discovered
that he taught the students to solve their problem with the help of
radicals!

A mathematician organizes a lottery in which the prize is an
infinite amount of money. When the winning ticket is drawn, and
the jubilant winner comes to claim his prize, the mathematician
explains the mode of payment: “1 dollar now, 1/2 dollar next week,
1/3 dollar the week after that...”

A Mathematician was put in a room. The room contains a table
and three metal spheres about the size of a softball. He was told
to do whatever he wants with the balls and the table in one hour.
After an hour, the balls are arranges in a triangle at the center
of the table. The same test is given to a Physicist. After an hour,
the balls are stacked one on top of the other in the center of the
table. Finally, an Engineer was tested. After an hour, one of the
balls is broken, one is missing, and he’s carrying the third out in
his lunchbox.

A mathematician decides he wants to learn more about practical
problems. He sees a seminar with a nice title: “The Theory of
Gears.” So he goes. The speaker stands up and begins, “The theory
of gears with a real number of teeth is well known ...”

When a statistician passes the airport security check, they
discover a bomb in his bag. He explains. “Statistics shows that the
probability of a bomb being on an airplane is 1/1000. However, the
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chance that there are two bombs at one plane is 1/1000000. So, I
am much safer...”

What is the difference between a Psychotic, a Neurotic and
a mathematician? A Psychotic believes that 2+2=5. A Neurotic
knows that 2+2=4, but it kills him. A mathematician simply
changes the base.

A mathematician belives nothing until it is proven
A physicist believes everything until it is proven wrong
A chemist doesn’t care
A biologist doesn’t understand the question.

To mathematicians, solutions mean finding the answers. But to
chemists, solutions are things that are still all mixed up.

3. Mathematical education

These sketches demonstrate how desperately we want to push
the math into the public education, and the struggle and passion
of math. students.

The Evolution of Math Teaching
- 1960s: A peasant sells a bag of potatoes for $10. His costs

amount to 4/5 of his selling price. What is his profit?
- 1970s: A farmer sells a bag of potatoes for $10. His costs

amount to 4/5 of his selling price, that is, $8. What is his profit?
- 1970s (new math): A farmer exchanges a set P of potatoes

with set M of money. The cardinality of the set M is equal to 10,
and each element of M is worth $1. Draw ten big dots representing
the elements of M. The set C of production costs is composed of
two big dots less than the set M. Represent C as a subset of M and
give the answer to the question: What is the cardinality of the set
of profits?

- 1980s: A farmer sells a bag of potatoes for $10. His production
costs are $8, and his profit is $2. Underline the word “potatoes” and
discuss with your classmates.
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- 1990s: A farmer sells a bag of potatoes for $10. His or her
production costs are 0.80 of his or her revenue. On your calculator,
graph revenue vs. costs. Run the POTATO program to determine
the profit. Discuss the result with students in your group. Write
a brief essay that analyzes this example in the real world of
economics.

(Anon: adapted from The American Mathematical Monthly,
Vol. 101, No. 5, May 1994 (Reprinted by STan Kelly-Bootle in
Unix Review, Oct 94)

Top excuses for not doing homework:
- I accidentally divided by zero and my paper burst into flames.
- Isaac Newton’s birthday.
- I could only get arbitrarily close to my textbook. I couldn’t

actually reach it.
- I have the proof, but there isn’t room to write it in this margin.
- I was watching the World Series and got tied up trying to

prove that it converged.
- I have a solar powered calculator and it was cloudy.
- I locked the paper in my trunk but a four-dimensional dog got

in and ate it.
- I could have sworn I put the homework inside a Klein bottle,

but this morning I couldn’t find it.
Warning! It is against the rule to use these excuses in my classes!

A. Ch.

A professor’s enthusiasm for teaching precalculus varies
inversely with the likelihood of his having to do it.

A student comes to the department with a shiny new cup, the
sort of which you get when having won something. He explained: I
won it in the MD Math Contest. They asked what 7 + 7 is. I said
12 and got 3rd place!

Two male mathematicians are in a bar. The first one says to
the second that the average person knows very little about basic
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mathematics. The second one disagrees, and claims that most
people can cope with a reasonable amount of math.

The first mathematician goes off to the washroom, and in his
absence the second calls over the waitress. He tells her that in a
few minutes, after his friend has returned, he will call her over and
ask her a question. All she has to do is answer one third x cubed.

She repeats “one thir – dex cue”?
He repeats “one third x cubed”.
Her: ‘one thir dex cuebd’? Yes, that’s right, he says. So she

agrees, and goes off mumbling to herself, “one thir dex cuebd...”.
The first guy returns and the second proposes a bet to prove

his point, that most people do know something about basic math.
He says he will ask the blonde waitress an integral, and the first
laughingly agrees. The second man calls over the waitress and asks
“what is the integral of x squared?”

The waitress says “one third x cubed” and while walking away,
turns back and says over her shoulder “plus a constant!”

A somewhat advanced society has figured how to package basic
knowledge in pill form.

A student, needing some learning, goes to the pharmacy and
asks what kind of knowledge pills are available. The pharmacist
says “Here’s a pill for English literature.” The student takes the pill
and swallows it and has new knowledge about English literature!

“What else do you have?” asks the student.
“Well, I have pills for art history, biology, and world history,”

replies the pharmacist.
The student asks for these, and swallows them and has new

knowledge about those subjects.
Then the student asks, “Do you have a pill for math?”
The pharmacist says “Wait just a moment”, and goes back into

the storeroom and brings back a whopper of a pill and plunks it on
the counter.

“I have to take that huge pill for math?” inquires the student.
The pharmacist replied “Well, you know math always was a little

hard to swallow.”
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Golden rule for math teachers: You must tell the truth, and
nothing but the truth, but not the whole truth.

A math professor is one who talks in someone else’s sleep.

Q: What do you get when you add 2 apples to 3 apples?
A: Answer: A senior high school math problem.

Quotes from math students and lecturers

“This is a one line proof...if we start sufficiently far to the left.”

“The problems for the exam will be similar to the discussed in
the class. Of course, the numbers will be different. But not all of
them. Pi will still be 3.14159... ”

4. Seminar semantics, etc.

A lecturer: “Now we’ll prove the theorem. In fact I’ll prove it all
by myself.”

How to prove it. Guide for lecturers.

Proof by vigorous handwaving:
Works well in a classroom or seminar setting.

Proof by example:
The author gives only the case n = 2 and suggests that it

contains most of the ideas of the general proof.

Proof by omission:
“The reader may easily supply the details” or “The other 253

cases are analogous”

Proof by intimidation:
“Trivial.”
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Proof by cumbersome notation:
Best done with access to at least four alphabets and special

symbols.

Proof by exhaustion:
An issue or two of a journal devoted to your proof is useful.

Proof by reference to inaccessible literature:
The author cites a simple corollary of a theorem to be found in

a privately circulated memoir of the Slovenian Philological Society,
1883.

Proof by accumulated evidence:
Long and diligent search has not revealed a counterexample.

Proof by mutual reference:
In reference A, Theorem 5 is said to follow from Theorem 3 in

reference B, which is shown to follow from Corollary 6.2 in reference
C, which is an easy consequence of Theorem 5 in reference A.

Proof by metaproof:
A method is given to construct the desired proof. The

correctness of the method is proved by any of these techniques.

Proof by ghost reference:
Nothing even remotely resembling the cited theorem appears in

the reference given.

Proof by semantic shift:
Some of the standard but inconvenient definitions are changed

for the statement of the result.

Proof by appeal to intuition:
Cloud-shaped drawings frequently help here.
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Dictionary of Definitions of Terms Commonly Used in
Math Lectures

The following is a guide to terms which are commonly used
but rarely defined. In the search for proper definitions for these
terms we found no authoritative, nor even recognized, source. Thus,
we followed the advice of mathematicians handed down from time
immortal: “Wing It.”

CLEARLY:
I don’t want to write down all the “in- between” steps.
TRIVIAL:
If I have to show you how to do this, you’re in the wrong class.
OBVIOUSLY:
I hope you weren’t sleeping when we discussed this earlier,

because I refuse to repeat it.
RECALL:
I shouldn’t have to tell you this, but for those of you who erase

your memory tapes after every test...
WLOG (Without Loss Of Generality):
I’m not about to do all the possible cases, so I’ll do one and let

you figure out the rest.
IT CAN EASILY BE SHOWN:
Even you, in your finite wisdom, should be able to prove this

without me holding your hand.
CHECK or CHECK FOR YOURSELF:
This is the boring part of the proof, so you can do it on your

own time.
SKETCH OF A PROOF:
I couldn’t verify all the details, so I’ll break it down into the

parts I couldn’t prove.
HINT:
The hardest of several possible ways to do a proof.
BRUTE FORCE (AND IGNORANCE):
Four special cases, three counting arguments, two long

inductions, “and a partridge in a pair tree.”
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SOFT PROOF:
One third less filling (of the page) than your regular proof, but

it requires two extra years of course work just to understand the
terms.

ELEGANT PROOF:
Requires no previous knowledge of the subject matter and is

less than ten lines long.
SIMILARLY:
At least one line of the proof of this case is the same as before.
CANONICAL FORM:
4 out of 5 mathematicians surveyed recommended this as the

final form for their students who choose to finish.
TFAE (The Following Are Equivalent):
If I say this it means that, and if I say that it means the other

thing, and if I say the other thing...
BY A PREVIOUS THEOREM:
I don’t remember how it goes (come to think of it I’m not really

sure we did this at all), but if I stated it right (or at all), then the
rest of this follows.

TWO LINE PROOF:
I’ll leave out everything but the conclusion, you can’t question

’em if you can’t see ’em.
BRIEFLY:
I’m running out of time, so I’ll just write and talk faster.
LET’S TALK THROUGH IT:
I don’t want to write it on the board lest I make a mistake.
PROCEED FORMALLY:
Manipulate symbols by the rules without any hint of their true

meaning (popular in pure math courses).
QUANTIFY:
I can’t find anything wrong with your proof except that it won’t

work if x is a moon of Jupiter (Popular in applied math courses).
PROOF OMITTED:
Trust me, It’s true.
Traditional - contemporary math dictionary.
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WHAT’S OUT AND WHAT’S IN FOR MATHEMATICAL
TERMS

by Michael Stueben (November 7, 1994)

Today it is considered an egregious faux pas to speak or write
in the crude antedated terms of our grandfathers. To assist the
isolated student and the less sophisticated teacher, I have prepared
the following list of currently fashionable mathematical terms in
academia. I pass this list on to the general public as a matter of
charity and in the hope that it will lead to more refined elucidation
from young scholars.

thinking: hypothesizing.
proof by contradiction or indirect proof: reductio ad absurdum.
mistake: non sequitur.
starting place: handle.
with corresponding changes: mutatis mutandis.
counterexample: pathological exception.
consequently: ipso facto.
swallowing results: digesting proofs.
therefore: ergo.
has an easy-to-understand, but hard-to-find solution: obvious.
has two easy-to-understand, but hard-to-find solutions: trivial.
truth: tautology.
empty: vacuous.
drill problems: plug-and-chug work.
criteria: rubric.
example: substantive instantiation. similar structure: homomorphic.
very similar structure: isomorphic.
same area: isometric.
arithmetic: number theory.
count: enumerate.
one: unity.
generally/specifically: globally/locally.
constant: invariant.
bonus result: corollary.
distance: metric measure.
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several: a plurality.
function/argument: operator/operand.
separation/joining: bifurcation/confluence.
fourth power or quartic: biquadratic.
random: stochastic.
unique condition: a singularity.
uniqueness: unicity.
tends to zero: vanishes.
tip-top point: apex.
half-closed: half-open.
concave: non-convex.
rectangular prisms: parallelepipeds.
perpendicular (adj.): orthogonal.
perpendicular (n.): normal.
Euclid: Descartes.
Fermat: Wiles.
path: trajectory.
shift: rectilinear translation.
similar: homologous.
very similar: congruent.
whopper-jawed: skew or oblique.
change direction: perturb.
join: concatenate.
approximate to two or more places: accurate.
high school geometry or plane geometry: geometry of the

Euclidean plane under the Pythagorean metric. clever scheme:
algorithm.

initialize to zero: zeroize.
decimal: denary.
alphabetical order: lexical order.
a divide-and-conquer method: an algorithm of logarithmic

order.
student ID numbers: witty passwords.
numerology and number sophistry: descriptive statistics

Special thanks to Peter Braxton who got me started writing
this stuff and who contributed five of the items above.
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Professional secrets
The highest moments in the life of a mathematician are the first

few moments after one has proved the result, but before one finds
the mistake.

Golden rule of deriving: never trust any result that was proved
after 11 PM.

The professional quality of a mathematician is inversely
proportional to the importance it attaches to space and equipment.

Relations between pure and applied mathematicians are based
on trust and understanding. Namely, pure mathematicians do not
trust applied mathematicians, and applied mathematicians do not
understand pure mathematicians.

Some mathematicians become so tense these days that they that
they do not go to sleep during seminars.

If I have seen farther than others, it is because I was standing
on the shoulders of giants.

– Isaac Newton

In the sciences, we are now uniquely privileged to sit side by
side with the giants on whose shoulders we stand.

– Gerald Holton

If I have not seen as far as others, it is because giants were
standing on my shoulders.

– Hal Abelson

Mathematicians stand on each other’s shoulders.
– Gauss

Mathematicians stand on each other’s shoulders while computer
scientists stand on each other’s toes.

– Richard Hamming

242



It has been said that physicists stand on one another’s shoulders.
If this is the case, then programmers stand on one another’s toes,
and software engineers dig each other’s graves.

– Unknown

These days, even the most pure and abstract mathematics is in
danger to be applied.

The reason that every major university maintains a department
of mathematics is that it is cheaper to do this than to institutionalize
all those people.

5. Theorems

Here, the powerful mathematical methods are successively
applied to the “real life problems”.

Interesting Theorem:
All positive integers are interesting.
Proof:
Assume the contrary. Then there is a lowest non-interesting

positive integer. But, hey, that’s pretty interesting! A contradiction.

Boring Theorem:
All positive integers are boring.
Proof:
Assume the contrary. Then there is a lowest non-boring positive

integer. Who cares!

Discovery:
Mathematicians have announced the existence of a new whole

number which lies between 27 and 28. “We don’t know why it’s
there or what it does,” says Cambridge mathematician, Dr. Hilliard
Haliard, “we only know that it doesn’t behave properly when put
into equations, and that it is divisible by six, though only once.”
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Theorem:
There are two groups of people in the world; those who believe

that the world can be divided into two groups of people, and those
who don’t.

Theorem:
The world is divided into two classes: people who say “The

world is divided into two classes”, and people who say: The world
is divided into two classes: people who say: “The world is divided
into two classes”, and people who say: The world is divided into
two classes: people who say ...

There are three kinds of people in the world; those who can
count and those who can’t.

There are 10 kinds of people in the world, those who understand
binary math, and those who don’t.

There really are only two types of people in the world, those
that DON’T DO MATH, and those that take care of them.

Cat Theorem:
A cat has nine tails.
Proof:
No cat has eight tails. A cat has one tail more than no cat.

Therefore, a cat has nine tails.

Salary Theorem
The less you know, the more you make.
Proof:
Postulate 1: Knowledge is Power.
Postulate 2: Time is Money.As every engineer knows: Power =

Work / Time
And since Knowledge = Power and Time = Money
It is therefore true that Knowledge = Work / Money .
Solving for Money, we get:
Money = Work / Knowledge
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Thus, as Knowledge approaches zero, Money approaches
infinity, regardless of the amount of Work done.

Q: How do you tell that you are in the hands of the
Mathematical Mafia?

A: They make you an offer that you can’t understand.

Notes on the horse colors problem
Lemma 1. All horses are the same color. (Proof by induction)
Proof. It is obvious that one horse is the same color. Let us

assume the proposition P(k) that k horses are the same color and
use this to imply that k+1 horses are the same color. Given the set
of k+1 horses, we remove one horse; then the remaining k horses
are the same color, by hypothesis. We remove another horse and
replace the first; the k horses, by hypothesis, are again the same
color. We repeat this until by exhaustion the k+1 sets of k horses
have been shown to be the same color. It follows that since every
horse is the same color as every other horse, P(k) entails P(k+1).
But since we have shown P(1) to be true, P is true for all succeeding
values of k, that is, all horses are the same color.

Theorem 1. Every horse has an infinite number of legs. (Proof
by intimidation.)

Proof. Horses have an even number of legs. Behind they have
two legs and in front they have fore legs. This makes six legs, which
is certainly an odd number of legs for a horse. But the only number
that is both odd and even is infinity. Therefore horses have an
infinite number of legs. Now to show that this is general, suppose
that somewhere there is a horse with a finite number of legs. But
that is a horse of another color, and by the lemma that does not
exist.

Corollary 1. Everything is the same color.
Proof. The proof of lemma 1 does not depend at all on the nature

of the object under consideration. The predicate of the antecedent
of the universally-quantified conditional ’For all x, if x is a horse,
then x is the same color,’ namely ’is a horse’ may be generalized to
’is anything’ without affecting the validity of the proof; hence, ’for
all x, if x is anything, x is the same color.’
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Corollary 2. Everything is white.
Proof. If a sentential formula in x is logically true, then any

particular substitution instance of it is a true sentence. In particular
then: ’for all x, if x is an elephant, then x is the same color’ is
true. Now it is manifestly axiomatic that white elephants exist
(for proof by blatant assertion consult Mark Twain ’The Stolen
White Elephant’). Therefore all elephants are white. By corollary
1 everything is white.

Theorem 2. Alexander the Great did not exist and he had an
infinite number of limbs.

Proof. We prove this theorem in two parts. First we note the
obvious fact that historians always tell the truth (for historians
always take a stand, and therefore they cannot lie). Hence we have
the historically true sentence, ’If Alexander the Great existed, then
he rode a black horse Bucephalus.’ But we know by corollary 2
everything is white; hence Alexander could not have ridden a black
horse. Since the consequent of the conditional is false, in order for
the whole statement to be true the antecedent must be false. Hence
Alexander the Great did not exist.

We have also the historically true statement that Alexander was
warned by an oracle that he would meet death if he crossed a certain
river. He had two legs; and ’forewarned is four-armed.’ This gives
him six limbs, an even number, which is certainly an odd number
of limbs for a man. Now the only number which is even and odd
is infinity; hence Alexander had an infinite number of limbs. We
have thus proved that Alexander the Great did not exist and that
he had an infinite number of limbs.

According to statistics, there are 42 million alligator eggs laid
every year. Of those, only about half get hatched. Of those that
hatch, three fourths of them get eaten by predators in the first
36 days. And of the rest, only 5 percent get to be a year old for
one reason or another. Isn’t statistics wonderful? If it weren’t for
statistics, we’d be eaten by alligators!
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6. Playground
Let’s play with math objects!

An insane mathematician gets on a bus and starts threatening
everybody: “I’ll integrate you! I’ll differentiate you!!!” Everybody
gets scared and runs away. Only one lady stays. The guy comes
up to her and says: “Aren’t you scared, I’ll integrate you, I’ll
differentiate you!!!” The lady calmly answers: “No, I am not scared,
I am ex .”

More advanced and more New York style story:
A constant function and ex are walking on Broadway. Then

suddenly the constant function sees a differential operator
approaching and runs away. So ex follows him and asks why
the hurry. “Well, you see, there’s this differential operator coming
this way, and when we meet, he’ll differentiate me and nothing will
be left of me...!” “Ah,“ says ex, “he won’t bother ME, I’m e to the
x!” and he walks on. Of course he meets the differential operator
after a short distance.

ex: “Hi, I’m ex”
diff.op.: “Hi, I’m d

dy ”

“The number you have dialed is imaginary. Please rotate your
phone 90 degrees and try again.”

The shortest math joke: let epsilon be < 0

Funny formulas
The limit as 3 goes to 4 of 32 is 16.
(For native LaTex speakers: lim3→4 32 = 16)
1 + 1 =3, for sufficiently large one’s.
The combination of the Einstein and Pythagoras discoveries:
E = mc2 = m(a2 + b2)
2 and 2 is 22
The limit as n goes to infinity of sin(x)/n is 6.
Proof: cancel the n in the numerator and denominator.
As x goes to zero, the limit of 8/x is∞ (infinity), then the limit

(as x goes to zero) of Z/x is N

247



Q: How many times can you subtract 7 from 83, and what is
left afterwards?

A: I can subtract it as many times as I want, and it leaves 76
every time.

A Neanderthal child rode to school with a boy from Hamilton.
When his mother found out she said, “What did I tell you? If you
commute with a Hamiltonian you’ll never evolve!”

In modern mathematics, algebra has become so important that
numbers will soon only have symbolic meaning.

A circle is a round straight line with a hole in the middle.

In the topologic hell the beer is packed in Klein’s bottles.

Q: Why did the chicken cross the Moebius strip?
A: To get to the other ... er, um ...

Two mathematicians are studying a convergent series. The first
one says: “Do you realize that the series converges even when all
the terms are made positive?” The second one asks: “Are you sure?”
“Absolutely!”

Q: What does the zero say to the the eight?
A: Nice belt!

Life is complex: it has both real and imaginary components.

Math problems? Call 1-800-[(10x)(13i)2]-[sin(xy)/2.362x].

“Divide fourteen sugar cubes into three cups of coffee so that
each cup has an odd number of sugar cubes in it.” “That’s easy:
one, one, and twelve.” “But twelve isn’t odd!” “Twelve is an odd
number of cubes to put in a cup of coffee...”

A statistician can have his head in an oven and his feet in ice,
and he will say that on the average he feels fine.
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Q: Did you hear the one about the statistician?
A: Probably....

The light bulb problem

Q: How many mathematicians does it take to screw in a light
bulb?

A1: None. It’s left to the reader as an exercise.
A2: None. A mathematician can’t screw in a light bulb, but he

can easily prove the work can be done.
A3: One. He gives it to four programmers, thereby reducing the

problem to the already solved (ask a programmer, how)
A4: The answer is intuitively obvious
A5: Just one, once you’ve managed to present the problem in

terms he/she is familiar with.
A6: In earlier work, Wiener [1] has shown that one mathematician

can change a light bulb.
If k mathematicians can change a light bulb, and if one more

simply watches them do it, then k + 1 mathematicians will have
changed the light bulb.

Therefore, by induction, for all n in the positive integers, n
mathematicians can change a light bulb.

Bibliography:
[1] Weiner, Matthew P,...

How many numerical analysts does it take to replace a light
bulb?

3.9967: (after six iterations).

How many classical geometers does it take to replace a light
bulb?

None: You can’t do it with a straight edge and a compass.

How many constructivist mathematicians does it take to replace
a light bulb?

None: They do not believe in infinitesimal rotations.
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How many topologists does it take to screw in a light bulb?
Just one. But what will you do with the doughnut?

How many analysts does it take to screw in a light bulb?
Three: One to prove existence, one to prove uniqueness and one

to derive a nonconstructive algorithm to do it.

How many Bourbakists does it take to replace a light bulb?
Changing a light bulb is a special case of a more general

theorem concerning the maintain and repair of an electrical system.
To establish upper and lower bounds for the number of personnel
required, we must determine whether the sufficient conditions of
Lemma 2.1 (Availability of personnel) and those of Corollary 2.3.55
(Motivation of personnel) apply. Iff these conditions are met, we
derive the result by an application of the theorems in Section
3.1123. The resulting upper bound is, of course, a result in an
abstract measure space, in the weak-* topology.

How many professors does it take to replace a light bulb?
One: With eight research students, two programmers, three

post-docs and a secretary to help him.

How many university lecturers does it take to replace a light
bulb?

Four: One to do it and three to co-author the paper.

How many graduate students does it take to replace a light
bulb?

Only one: But it takes nine years.

How many math department administrators does it take to
replace a light bulb?

None: What was wrong with the old one then?

How we do it ...
Aerodynamicists do it in drag.
Algebraists do it by symbolic manipulation.
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Algebraists do it in a ring, in fields, in groups.
Analysts do it continuously and smoothly.
Applied mathematicians do it by computer simulation.
Banach spacers do it completely.
Bayesians do it with improper priors.
Catastrophe theorists do it falling off part of a sheet.
Combinatorists do it as many ways as they can.
Complex analysts do it between the sheets
Computer scientists do it depth-first.
Cosmologists do it in the first three minutes.
Decision theorists do it optimally.
Functional analysts do it with compact support.
Galois theorists do it in a field.
Game theorists do it by dominance or saddle points.
Geometers do it with involutions.
Geometers do it symmetrically.
Graph theorists do it in four colors.
Hilbert spacers do it orthogonally.
Large cardinals do it inaccessibly.
Linear programmers do it with nearest neighbors.
Logicians do it by choice, consistently and completely.
Logicians do it incompletely or inconsistently.
(Logicians do it) or [not (logicians do it)].
Number theorists do it perfectly and rationally.
Mathematical physicists understand the theory of how to do it,

but have difficulty obtaining practical results.
Pure mathematicians do it rigorously.
Quantum physicists can either know how fast they do it, or

where they do it, but not both.
Real analysts do it almost everywhere
Ring theorists do it non-commutatively.
Set theorists do it with cardinals.
Statisticians probably do it.
Topologists do it openly, in multiply connected domains
Variationists do it locally and globally.
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Cantor did it diagonally.
Fermat tried to do it in the margin, but couldn’t fit it in.
Galois did it the night before.
Möbius always does it on the same side.
Markov does it in chains.
Newton did it standing on the shoulders of giants.
Turing did it but couldn’t decide if he’d finished.

A SLICE OF PI
******************
3.14159265358979
1640628620899
23172535940
881097566
5432664
09171
036
5

7. Puns

Q: What’s the contour integral around Western Europe?
A: Zero, because all the Poles are in Eastern Europe!
Addendum: Actually, there ARE some Poles in Western Europe,

but they are removable!

Q:What is a dilemma?
A: A lemma that proves two results.

Q: What’s nonorientable and lives in the sea?
A: Moebius Dick.

Q: What’s yellow and equivalent to the Axiom of Choice.
A: Zorn’s Lemon.

Q: What’s purple and commutes?
A: An abelian grape.
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Q: What’s yellow, linear, normed and complete?
A: A Bananach space.

Q: What’s a polar bear?
A: A rectangular bear after a coordinate transform.

Was General Calculus a Roman war hero?

“What’s your favorite thing about mathematics?” “Knot theory.”
“Yeah, me neither.”

Q: Why didn’t Newton discover group theory?
A: Because he wasn’t Abel.

In Alaska, where it gets very cold, pi is only 3.00. As you know,
everything shrinks in the cold. They call it Eskimo pi.

How do you prove in three steps that a sheet of paper is a lazy
dog?

1. A sheet of paper is an ink-lined plane.
2. An inclined plane is a slope up.
3. A slow pup is a lazy dog.

A geometer went to the beach to catch the rays and became a
TanGent.

8. Anecdotes

Next several stories are attributed to real mathematicians. For
most of them, it was impossible to check the truthfulness of the
story. Therefore the names are often removed.

In 1915, Emma Noether arrived in Göttingen but was denied
the private-docent status. The argument was that a woman cannot
attend the University senate (the faculty meetings). Hilbert’s
reaction was: “Gentlemen! There is nothing wrong to have a
woman in the senate. Senate is not a bath.”
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The following problem can be solved either the easy way or the
hard way.

Two trains 200 miles apart are moving toward each other; each
one is going at a speed of 50 miles per hour. A fly starting on the
front of one of them flies back and forth between them at a rate of
75 miles per hour. It does this until the trains collide and crush the
fly to death. What is the total distance the fly has flown?

The fly actually hits each train an infinite number of times
before it gets crushed, and one could solve the problem the hard way
with pencil and paper by summing an infinite series of distances.
The easy way is as follows: Since the trains are 200 miles apart and
each train is going 50 miles an hour, it takes 2 hours for the trains
to collide. Therefore the fly was flying for two hours. Since the fly
was flying at a rate of 75 miles per hour, the fly must have flown
150 miles. That’s all there is to it.

When this problem was posed to John von Neumann, he
immediately replied, “150 miles.” “It is very strange,” said the
poser, “but nearly everyone tries to sum the infinite series.” “What
do you mean, strange?” asked Von Neumann. “That’s how I did
it!”

Another von Neumann quote : Young man, in mathematics you
don’t understand things, you just get used to them.

The mathematician S. had to move to a new place. His wife
didn’t trust him very much, so when they stood down on the street
with all their things, she asked him to watch their ten trunks, while
she get a taxi. Some minutes later she returned. Said the husband:

“I thought you said there were ten trunks, but I’ve only counted
to nine.”

The wife said: “No, they’re TEN!”
“But I have counted them: 0, 1, 2, ...”

N. had the habit of simply writing answers to homework
assignments on the board (the method of solution being, of course,
obvious) when he was asked how to solve problems. One time one
of his students tried to get more helpful information by asking if
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there was another way to solve the problem. N. looked blank for a
moment, thought, and then answered, “Yes”.

In his lecture, ** formulated a theorem and said: “The proof
is obvious”. Then he thought for a minute, left the lecture room,
returned after 15 minutes and happily concluded: “Indeed, it is
obvious!”

A famous mathematician was to give a keynote speech at a
conference. Asked for an advance summary, he said he would
present a proof of Fermat’s Last Theorem – but they should keep
it under their hats. When he arrived, though, he spoke on a much
more prosaic topic. Afterwards the conference organizers asked
why he said he’d talk about the theorem and then didn’t. He
replied this was his standard practice, just in case he was killed on
the way to the conference.

A mathematician about his late colleague: “He made a lot of
mistakes, but he made them in a good direction. I tried to copy
this, but I found out that it is very difficult to make good mistakes.”

This story is attributed to Professor Lev Loytiansky, the stage
is in Soviet Union in the thirties or forties.

L. organized the seminar in hydrodynamics in his University.
Among the regular attendees there were two men in the uniform,
obviously military engineers. They never discussed the problems
they were working on. But one day they ask L. to help with a math.
problem. They explained that the solution of a certain equation
oscillated and asked how they should change the coefficients to
make it monotonic. L. looked on the equation and said: “Make the
wings longer!”

Students asked ** to exclude a part of the course from the final
exam. ** agreed. Encouraged by the easy success, the students
asked to skip another part of the course, and ** agreed again, and
then again. However, in the end of the term he did include all this
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material in the exam. The class loudly complained: “Dr **, you
promised us to skip this stuff!” ** answered: “Yes, I did. But I
lied!”

Ernst Eduard Kummer (1810-1893), a German algebraist, was
sometimes slow at calculations.. Whenever he had occasion to do
simple arithmetic in class, he would get his students to help him.
Once he had to find 7 x 9. “Seven times nine,” he began, “Seven
times nine is er – ah — ah – seven times nine is. . . .” “Sixty-one,”
a student suggested. Kummer wrote 61 on the board. “Sir,” said
another student, “it should be sixty-nine.” “Come, come, gentlemen,
it can’t be both,” Kummer exclaimed. “It must be one or the other.”

This anecdote is attributed to Landau (the Russian physicist
Lev not the Göttingen mathematician Edmund).

Landau’s group was discussing a bright new theory, and one
of junior colleagues of Landau bragged that he had independently
discovered the theory a couple of years ago, but did not bother to
publish his finding.

“I would not repeat this claim if I were you,” Landau replied:
“There is nothing wrong if one has not found a solution to a
particular problem. However, if one has found it but does not
publish it, he shows a poor judgment and inability to understand
what important is in modern physics”.

9. Limericks.
Limericks are always limericks. (The obscene math limericks

were mercilessly excluded.)

A mathematician confided
That the Möbius band is one-sided
And you’ll get quite a laugh
If you cut one in half
’Cause it stays in one piece when divided.

’Tis a favorite project of mine
A new value of pi to assign.
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I would fix it at 3
For it’s simpler, you see,
Than 3 point 1 4 1 5 9

A challenge for many long ages
Had baffled the savants and sages.
Yet at last came the light:
Seems old Fermat was right–
To the margin add 200 pages.

Integral z-squared dz
from 1 to the cube root of 3
times the cosine
of three pi over 9
equals log of the cube root of ’e’.
And it’s correct, too.

This poem was written by John Saxon (an author of math
textbooks).

((12 + 144 + 20 + (3 ∗ 4(1/2)))/7) + (5 ∗ 11) = 92 + 0
A Dozen, a Gross and a Score,
plus three times the square root of four,
divided by seven,
plus five times eleven,
equals nine squared and not a bit more.

In arctic and tropical climes,
the integers, addition, and times,
taken (mod p) will yield
a full finite field,
as p ranges over the primes.

Chebychev said it and I’ll say it again:
There’s always a prime between n and 2n!

A conjecture both deep and profound
Is whether the circle is round;
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In a paper by Erdös,
written in Kurdish,
A counterexample is found.
(Note: Erdös is pronounced “Air - dish”)

There once was a number named pi
Who frequently liked to get high.
All he did every day
Was sit in his room and play
With his imaginary friend named i.
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