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[lannoe moco6ue NpeIHA3HAYEHO A1 ACIUPAHTOB, MOTOBAIINXCS CAa-
BATh KAHAWJATCKAN DK3aMEH MO AaHTJIUUACKOMY A3LIKy. KEro ocHoBHas
L[eJb — COBEPLICHCTBOBAHNE HABBIKOB YTEHUs, YTO IPEAIONIArAET yMe-
HUE U3BIEKATh NHOOPMAILUIO B HEOOXOAUMOM 00BeMe, JeJaTh ajeKBaT-
HBIV TIEPEBOJ, IEPENABATH COAEPKAHME TEKCTAa B YCTHOU U MUCHMEHHOU
dopme, yaacTBoBaTh B 6ecege. VHade roBops, MBI pacCMaTPUBAEM UTe-
HUE U KaK CAMOCTOATEIbHBIN BUJ PEUEBOHN AEATEILHOCTH, U KaK Cpel-
CTBO 06y‘{€HI/Iﬂ APYTUM A3BIKOBBIM U DEYIEBBIM HABBIKAM.

CoBepLIeHCTBOBAHNE HABBIKOB ITEHUs ABIAETCA BAXKHOU COCTABILI-
o1Ien 00y 9eHnA UHOCTPAHHOMY A3BIKY JIOJEU, 3aHUMAIOIAXCA HAYKOM,
IOCKOJIBKY HHCBMeHHBIfI TEKCT IIO-IIPEXHEeMY OCTaeTCA LHEeHHBIM UCTOI-
HUKOM HayIHOU HH(OPMAIWH.

B 3aBECHMOCTH OT IOCTABICHHOM 334U UTEHUE OBIBACT NPOCMO-
MPOBLIM, IPEAIOIArAIOMUM O3HAKOMICHUE C TEKCTOM C HOCAEAYIOLUen
KPATKOHU €r0 HayIHOU XapaKTEPUCTUKON, 03HAKOMUMEAbHbIM, KOT 13 He-
00X04MMO YMEHUE IPOCACANTE PA3BUTHE HAY THOU TEMbI 1, HAKOHELl, U3y-
YAOUUM, TAIOMMAM IIOJHOE MOHUMAHUE TEKCTA. YMEHUe IOHATH U ake-
KBaTHO IEPEBECTH TEKCT Ha POSHOU A3BIK HENOCPENCTBEHHO CBA3AHO C
yMeHHeM pPa3o6paTbCai B TOHKOCTAX A3BIKOBOIO BBIPAXKEHUA, LIODTOMY
TPYAHO HEPEOLEHUTH POIb OGYICHIA 0CMbICAECHUI U GHAAU3Y T3BIKOBBIX
SBICHUM B U3yIaeMOM TEKCTe. JTHUM, B OCHOBHOM, ¥ 3aHUMAETC TAHHOE
nocobue.

B kavecTBe aHAIA3MPYEMOr0 MATEPHUAIA UCIOIb3YIOTCA NBE CTATHU
73 HayIHO-IIOMYJAPHOrO XypHaxa Scientific American. Iymaercs, 94To
TeMaTUKa dTUX CTaTen OyJeT NHTEPECHA U MOHATHA KaK MAaTEMaTHKAM,
TaK U MeXaHukKaM. DBpIibOp HAYYHO-IOMYJIAPHOI'O XAHPA OOBACHAETCS
TeM, YTO MMEHHO OH, KaK IIOKa3aly HCCICNOBAHUA, ABIACTCA HauOO-
Jee yAadIHbIM MaTepPUAIOM (B CAILYy CBOMX OCOGEHHOCTEN ), MO3BOIAIOIIAM
ODOATOTOBUTHCA K IIPAKTUICCKOMY UCIOJIB30OBAHUIO aHFﬂHﬁCKOFO A3BIKA
B PeAIbHOM CHTyamuu oGmeHns .

TekCT KaXAOU CTATBY PAa3[eleH Ha IaCTU, KOTOPBIE COIMPOBOXAA-
0TCA 33JaHuAMM (9aCTO C BKIOYEHHBIMM B HUX KOMMEHTADUAMMU), UX
LeJb — NpUBIEYb BHEMAHME K Hambonee JaCTOTHBIM M BAXKHBIM JEK-
CHYI€eCKNM, I'DAMMATUICCKUM U CTUIUCTUICCKUM OCO6€HHOCTHM HaYy'I-
HOIO TEKCTa. JTUM OOBACHAETCA HE CILUIOLIHOM, 8 BBIOODOYHBIN AHAIN3
SI3BIKOBBIX ABICHUY. [lJI1 3aKPEILIeHNsI NIPOUJEeHHOI0 MAaTEPUAId AI0TCI

LA.JI. Hasapenko. Hay4uHo-mONyIspHAs JUTEPATypa KaK 00HeKT (hyHKINO-
HAJIBHOW CTUIUCTUKMA U JIUHIBOAUAAKTUKA.— ABTOped. AuCC. ... I-pa dUIOIL.
nayx — M., 2000.



VIPaXHEHUsA HA IIEPEBOJ C PYCCKOrO A3BIKA Ha aHramuckun. VI Hakomerr,
B Ka4eCTBe JOMNOJHUTEIHLHOI0 MAaTEepUaIa C IEeIbI0 BEIPAOOTKN HABBHIKOB
BOCIPUATHA U IOHUMAHWA HAYIHOM PEIH CO CayXa (ayAupOBAaHUA) IPEI-
JIararoTCA BUAEOCIOXKETHI, oauHd u3 Hux — Fermat’s Last Theorem — Te-
MaTHYIECKU IOTHOCTHIO COBIHAAAET C AHAAU3UPYEMBIM TekcToM Fermat’s
Last Stand? u cosman Temu xe aBTopaMu. TakuM 06pa3oM, MOABIAETCA
BO3MOXHOCTB COIOCTABIEHUsA MUCHMEHHOU U YCTHOU GOPM BBIPAKEHUS
Ha OJHY W Ty X€ TeMy. B IpWIOXKeHUN HMeeTCA CUeHapuh. Takxke
B IIPUIOXKEHUU NAXOTCA 06pa3ubl TEKCTOB OJd IMUCBMEHHOI'O U YCTHOI'O
nepeBoa, HOA0GHbBIE TeM, ITO IPEeAJaraloTCa Ha DK3aMeHe.

Bripaxaem mckpenHmioio 6IarofapHOCTH PEIEH3EHTaM — NOKTODY
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MaTemMaTHyeckux Hayk, npodeccopy H. H. CmupHOBY, a Takke BBIILYCK-
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IIOMOIIB, OKA3aHHYIO IIPU IIOATOTOBKE nocobusa K mevaTu.
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Fermat’s Last Theorem

Reading

In 1994 Andrew J. Wiles of Princeton University announced that
he had discovered a proof of Fermat’s last theorem.

1. What does this theorem state?

2. What do you know about attempts to prove it?

Now you are going to read an article on the subject. The text is
divided into six parts, each of which is followed by exercises. Some
of them contain notes to simplify a task. After reading Part I for
the first time to get the general idea, read it again more carefully
and do the exercises. The same procedure should be followed when
you pass on to the next part of the text and so on.

1. Look through the title and the annotation of the article be-
low. You may not know the verbs to baffle and to crack. Try
to predict their meanings. While translating this part of the
text, concentrate on the superlatives: His most notorious the-
orem and the greatest minds. Do you remember the rule of
the comparison of adjectives and adverbs?

FERMAT’S LAST STAND?

His most notorious theorem baffled the greatest minds for more than
three centuries. But after10 years of work, one mathematician cracked it
by Simon Singh and Kenneth A. Ribet
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This past June, 500 mathematicians gathered in the Great Hall
of Go6ttingen University in Germany to watch Andrew J. Wiles of
Princeton University collect the prestigious Wolfskehl Prize. The
reward—established in 1908 for whoever proved Pierre de Fermat’s
famed last theorem—was originally worth $2 million (in today’s
dollars). By the summer of 1997, hyperinflation and the devalu-
ation of the mark had reduced it to a mere $50,000. But no one
cared. For Wiles, proving Fermat’s 17th-century conundrum had
realized a childhood dream and ended a decade of intense effort.
For the assembled guests, Wiles’s proof promised to revolutionize
the future of mathematics.

Indeed, to complete his 100-page calculation, Wiles needed to
draw on and further develop many modern ideas in mathematics.
In particular, he had to tackle the Shimura-Taniyama conjecture, an
important 20th-century insight into both algebraic geometry and
complex analysis. In doing so, Wiles forged a link between these
major branches of mathematics. Henceforth, insights from either
field are certain to inspire new results in the other. Moreover, now
that this bridge has been built, other connections between distant
mathematical realms may emerge.

2. a) Infinitive clauses can act as an adverbial, especially of
purpose (answering the question why? or what ... for?).
They are translated into Russian with the help of the
conjunctions: dus mo2o umobvl or 4moobbi.

To pass this exam you must work hard.
or
In order to pass ...
YT0o06BI CIATH TOT DK3aMEH, HyKHO XOPOIIO TOTPY JUThCA.
Identify two sentences with infinitive clauses of the above
type and translate them into Russian.

b) Infinitive clauses can follow the object after some verbs
(Complex Object), e.g. ask, tell, expect, consider:
He asked them to come back later.
These verbs can be followed by a noun or pronoun object
+ the bare infinitive or the —ing form: feel, bear, listen



Fermat’s Last Theorem

to, look at, notice, observe, see, match, etc.

| watched him draw/drawing a portrait.

In translating this construction into Russian we nearly
always use a subordinate clause (using wmo6bi, wmo or
KaK).

S Bugen, 9TO OH PUCOBAN/KAK OH DUCOBAJL KAKOU-TO
MOPTPET.

Find the sentence with Complex Object and translate it
into Russian.

3. What is the function of the pronoun one (. 7)? Translate
this sentence.

4. Identify the part of speech and its function of the —ing form
proving (1. 8) and translate it into Russian.

5. The Past Simple is used to express a finished action in the
past. What do we use the Past Perfect for? Analyse 1. 6-9.

6. Identify the sentence with the Present Perfect. Explain why
this form is used here. Translate it. Compare the Present
Perfect and the Past Simple. Give your examples.

7. Must and have (got) to are used to express obligation. Must
usually expresses the feelings and wishes of the speaker. Have
(got) to often expresses obligation that comes from some-
where else. Translate: In particular, he had to ... (1. 14)
Explain why had to is used here.

8. The expression both ... and is translated into Russian in the
following way: xak ... Tak u, u ... u. Consider 1. 14-16.

9. Compare the uses of other (1. 18 and 1. 19). What is the
difference?

10. We use do so instead of repeating a verb 4+ object or verb +
complement when it is clear from the context what we are
talking about. What is meant by In doing so ... (1. 16)?

11. Find three words in the text with the same or similar mean-
ing to the following: one part of large subject of study or
knowledge.

Now read Part II. Use your dictionary to check new words and
expressions, then pass on to the exercises.
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THE PRINCE OF AMATEURS

Pierre de Fermat was born on August 20, 1601, in Beaumont-de-
Lomagne, a small town in southwest France. He pursued a ca-
reer in local government and the judiciary. To ensure impartial-
ity, judges were discouraged from socializing, and so each evening
Fermat would retreat to his study and concentrate on his hobby,
mathematics. Although an amateur, Fermat was highly accom-
plished and was largely responsible for probability theory and the
foundations of calculus. Isaac Newton, the father of modern cal-
culus, stated that he had based his work on “Monsieur Fermat’s
method of drawing tangents.”

Above all, Fermat was a master of number theory—the study
of whole numbers and their relationships. He would often write
to other mathematicians about his work on a particular problem
and ask if they had the ingenuity to match his solution. These
challenges, and the fact that he would never reveal his own calcu-
lations, caused others a great deal of frustration. René Descartes,
perhaps most noted for inventing coordinate geometry, called Fer-
mat a braggart, and the English mathematician John Wallis once
referred to him as “that damned Frenchman.”

Fermat penned his most famous challenge, his so-called last the-
orem, while studying the ancient Greek mathematical text Arith-
metica, by Diophantus of Alexandria. The book discussed positive
whole-number solutions to the equation a? + b? = ¢2, Pythagoras’s
formula describing the relation between the sides of a right trian-
gle. This equation has infinitely many sets of integer solutions, such
as a = 3, b = 4, ¢ = 5, which are known as Pythagorean triples.
Fermat took the formula one step further and concluded that there
are no nontrivial solutions for a whole family of similar equations,
a™ + b" = ¢", where n represents any whole number greater than
2.

It seems remarkable that although there are infinitely many
Pythagorean triples, there are no Fermat triples. Even so, Fermat
believed he could support his claim with a rigorous proof. In the
margin of Arithmetica, the mischievous genius jotted a comment
that taunted generations of mathematicians: “I have a truly mar-

10
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Fermat’s Last Theorem

velous demonstration of this proposition, which this margin is too
narrow to contain.” Fermat made many such infuriating notes, and
after his death his son published an edition of Arithmetica that
included these teases. All the theorems were proved, one by one,
until only Fermat’s last remained.

Numerous mathematicians battled the last theorem and failed.
In 1742 Leonhard Euler, the greatest number theorist of the 18th
century, became so frustrated by his inability to prove the last the-
orem that he asked a friend to search Fermat’s house in case some
vital scrap of paper was left behind. In the 19th century Sophie
Germain—who, because of prejudice against women mathemati-
cians, pursued her studies under the name of Monsieur Leblanc—
made the first significant breakthrough. Germain proved a general
theorem that went a long way toward solving Fermat’s equation for
values of n that are prime numbers greater than 2 and for which
2n + 1 is also prime. (Recall that a prime number is divisible only
by 1 and itself.) But a complete proof for these exponents, or any
others, remained out of her reach.

At the start of the 20th century Paul Wolfskehl, a German indus-
trialist, bequeathed 100, 000 marks to whoever could meet Fermat’s
challenge. According to some historians, Wolfskehl was at one time
almost at the point of suicide, but he became so obsessed with try-
ing to prove the last theorem that his death wish disappeared. In
light of what had happened, Wolfskehl rewrote his will. The prize
was his way of repaying a debt to the puzzle that saved his life.

Ironically, just as the Wolfskehl Prize was encouraging enthu-
siastic amateurs to attempt a proof, professional mathematicians
were losing hope. When the great German logician David Hilbert
was asked why he never attempted a proof of Fermat’s last theo-
rem, he replied, “Before beginning I should have to put in three
years of intensive study, and I haven’t that much time to squan-
der on a probable failure.” The problem still held a special place
in the hearts of number theorists, but they regarded Fermat’s last
theorem in the same way that chemists regarded alchemy. It was a
foolish romantic dream from a past age.

11
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1. Would is a very common modal auxiliary. In this part of the

text it is used to talk about past habit and translated o6bramo
and to express past refusal (in the negative form). Find the
sentences with would and translate them. Do you remember
other functions of would?

. Find a word in the text with the same or similar meaning to

the following: someone who does an activity for pleasure or
interest, not as a job.

. Explain the meaning of the word combinations in a—h below.

a) ... were discouraged from socializing ... (l. 4)
b) Although an amateur, ... (1. 6)
c) ... was highly accomplished and was largely responsible
for probability theory ... (1l. 6-7)
d) Above all, ... (L. 11)
e) ... was a master of number theory ... (1. 11)
f) ... caused others a great deal of frustration. (1. 16)
) ... his most famous challenge ... (1. 20)

g
h) ... to whoever could meet Fermat’s challenge ...
(1. 55-56)

. Look at lines 8-10 (Isaac Newton ... ) and comment on the

use of tenses. In connection with this grammar area review
the rule of sequence of tenses.

. In indirect speech general questions (which invite yes or no

as an answer) begin with if, whether or whether or not.

E.g. ‘Can | borrow your dictionary?’— He asked her if he could
borrow her dictionary. Or cipocmi ee, MOXKET 4% OH BOCIIO/Nb-
30BATHCA €€ CIOBAPEM.

Notice that in direct speech the questions have inversion, but
that in indirect speech the word order is normal: if + subject
+ verb ...

Find the sentence of the above type in the text and translate
it into Russian. What can you say about special questions in
indirect speech? Is there any example here?

. Find two words in the text with the same or similar meaning

to name v.

. Consider the functions of the —ing forms:



Fermat’s Last Theorem

8.

10.
11.

12.

a) drawing (1. 10)
b) inventing (1. 17)
c) studying (1. 21)
d) describing (1. 24)
e) infuriating (1. 37)
f) solving (1. 49)
g) trying (1. 57)
h) repaying (1. 60)
i) encouraging (1. 61)
j) loosing (1. 63)

k) beginning (1. 65)
Having reviewed the rule of sequence of tenses, you know that
if the reporting verb (e. g. said) is in the past, the verb in the
reported clause will usually be in the past form as well.
E.g. She said fhe had read the book;

the repo;t,ed clause

Sometimes the present tense is retained when the reported
sentence deals with a general truth.
E.g. Copernicus concluded that the earth goes round the sun.
Compare: Fermat ... concluded that there are no nontrivial
solutions ... (Il. 27-28)
... Fermat believed he could support his claim with a rigorous
proof. (1l. 32-33)
Find quotations in the text and change to indirect speech.
Even so is a prepositional phrase used to introduce a fact that
is surprising in the light of what was just said. It connects
ideas between sentences.
Look at lines 31-40 and find sentences which express contrast-
ing ideas or concession. What is the function of although (1. 6,
1. 31)?
What does one by one mean? (1. 39)
Here, until (1. 40) means ‘up to the time’. What other time
conjunctions do you know?
What do the following prefixes add?

a) inability (1. 43)

b) rewrite (1. 59)

13
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¢) nontrivial (1. 28)
d) discourage (1. 4)
e) encourage (. 61)
f) coordinate (1. 17)
13. The word combination in case is usually translated ecau.
What do you think about its meaning in the sentence In 1742
.. (1L 42-45)7
14. Explain the difference in meaning.
a) David Hilbert asked why he never attempted a proof of
Fermat’s last theorem.
b) David Hilbert was asked why he never attempted a proof
of Fermat’s last theorem.
15. Insert prepositions:

to be discouraged ... , to concentrate ..., to be responsible
..., to base sth ... sth, to write ... sb ... sth, a work ...
a particular problem, to refer ... sb ..., a solution ... an
equation, ... the margin, prejudice ... sth, to be divisible

. 1, according ... some historians, ... light of what had
happened.

Read Part III. Use your dictionary to check new words and
expressions, then pass on to the exercises.

THE CHILDHOOD DREAM
Children, of course, love romantic dreams. And in 1963, at age 10,
Wiles became enamored with Fermat’s last theorem. He read about
it in his local library in Cambridge, England, and promised himself
that he would find a proof. His schoolteachers discouraged him from
wasting time on the impossible. His college lecturers also tried to
dissuade him. Eventually his graduate supervisor at the University
of Cambridge steered him toward more mainstream mathematics,
namely into the fruitful research area surrounding objects called
elliptic curves. The ancient Greeks originally studied elliptic curves,
and they appear in Arithmetica. Little did Wiles know that this
training would lead him back to Fermat’s last theorem.

Elliptic curves are not ellipses. Instead they are named as such
because they are described by cubic equations, like those used for

14
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calculating the perimeter of an ellipse. In general, cubic equations
for elliptical curves take the form y? = z° 4+ a2? 4+ bz + ¢, where a, b
and ¢ are whole numbers that satisfy some simple conditions. Such
equations are said to be of degree 3, because the highest exponent
they contain is a cube.

Number theorists regularly try to ascertain the number of so-
called rational solutions, those that are whole numbers or fractions,
for various equations. Linear or quadratic equations, of degree 1
and 2, respectively, have either no rational solutions or infinitely
many, and it is simple to decide which is the case. For compli-
cated equations, typically of degree 4 or higher, the number of
solutions is always finite—a fact called Mordell’s conjecture, which
the German mathematician Gerd Faltings proved in 1983. But el-
liptic curves present a unique challenge. They may have a finite or
infinite number of solutions, and there is no easy way of telling.

To simplify problems concerning elliptic curves, mathematicians
often reexamine them using modular arithmetic. They divide x and
y in the cubic equation by a prime number p and keep only the
remainder. This modified version of the equation is its “mod p”
equivalent. Next, they repeat these divisions with another prime
number, then another, and as they go, they note the number of
solutions for each prime modulus. Eventually these calculations
generate a series of simpler problems that are analogous to the
original.

The great advantage of modular arithmetic is that the maximum
values of x and y are effectively limited to p, and so the problem
is reduced to something finite. To grasp some understanding of the
original infinite problem, mathematicians observe how the number
of solutions changes as p varies. And using that information, they
generate a so-called L-series for the elliptic curve. In essence, an
L-series is an infinite series in powers, where the value of the coef-
ficient for each pth power is determined by the number of solutions
in modulo p.

In fact, other mathematical objects, called modular forms, also
have L-series. Modular forms should not be confused with modular
arithmetic. They are a certain kind of function that deals with
complex numbers of the form (z + iy), where = and y are real

15
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numbers, and ¢ is the imaginary number (equal to the square root
of —1).

What makes modular forms special is that one can transform
a complex number in many ways, and yet the function yields vir-
tually the same result. In this respect, modular forms are quite
remarkable. Trigonometric functions are similar inasmuch as an
angle, ¢, can be transformed by adding 7, and yet the answer is
constant: sin ¢ = sin(¢+m). This property is termed symmetry, and
trigonometric functions display it to a limited extent. In contrast,
modular forms exhibit an immense level of symmetry. So much
so that when the French polymath Henri Poincaré discovered the
first modular forms in the late 19th century, he struggled to come
to terms with their symmetry. He described to his colleagues how
every day for two weeks he would wake up and search for an error
in his calculations. On the 15th day he finally gave up, accepting
that modular forms are symmetrical in the extreme.

A decade or so before Wiles learned about Fermat, two young
Japanese mathematicians, Goro Shimura and Yutaka Taniyama, de-
veloped an idea involving modular forms that would ultimately
serve as a cornerstone in Wiles’s proof. They believed that mod-
ular forms and elliptic curves were fundamentally related—even
though elliptic curves apparently belonged to a totally different
area of mathematics. In particular, because modular forms have
an L-series—although derived by a different prescription than that
for elliptic curves—the two men proposed that every elliptic curve
could be paired with a modular form, such that the two L-series
would match.

Shimura and Taniyama knew that if they were right, the con-
sequences would be extraordinary. First, mathematicians generally
know more about the L-series of a modular form than that of an
elliptic curve. Hence, it would be unnecessary to compile the L-
series for an elliptic curve, because it would be identical to that
of the corresponding modular form. More generally, building such
a bridge between two hitherto unrelated branches of mathemat-
ics could benefit both: potentially each discipline could become
enriched by knowledge already gathered in the other.

The Shimura-Taniyama conjecture, as it was formulated by Shim-

16
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ura in the early 1960s, states that every elliptic curve can be paired
with a modular form; in other words, all elliptic curves are mod-
ular. Even though no one could find a way to prove it, as the
decades passed the hypothesis became increasingly influential. By
the 1970s, for instance, mathematicians would often assume that
the Shimura-Taniyama conjecture was true and then derive some
new result from it. In due course, many major findings came to
rely on the conjecture, although few scholars expected it would be
proved in this century. Tragically, one of the men who inspired it
did not live to see its ultimate importance. On November 17, 1958,
Yutaka Taniyama committed suicide.

1. In lines 1-11, does would refer to past habit, the future in
the past, unreal meaning, or anything else? Translate these
sentences into Russian.

2. Explain the meaning of the word combination more main-
stream mathematics (1. 7).

3. In statements it is usual for the verb to follow the subject.
Sometimes, however, this word order is reversed. We can refer
to this as inversion. It is used to give emphasis, especially
when the statement begins whith a negative word or idea, or
with so.

E.g. Not a single word had one written since the exam had
started.

Look at the sentence Little did Wiles know that ... (1. 10)
Notice how the subject Wiles comes after the auxiliary did.
Translate the sentence into Russian.

4. Consider some of many ways of translating as: 1) Tak kax,
IOCKOJIBKY; 2) KaK, B Ka1ecTBe; 3) [0 Mepe TOr0O Kak.
Explain the meaning of as and translate it in 1-5 below:

1) named as such (1. 12)

2) and as they go (1. 34)

3) serve as a cornerstone (1. 70)
4) as the decades passed (1. 90)
5) as it was formulated (1. 87)

5. Those is the plural of the demonstrative that. It can be a
replacement for an earlier phrase. It means ‘the ones ...’

17
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E.g. ... they are described by cubic equations, like those (=the
ones=cubic equations) used for calculating ... (l. 13)

In the word combination those used for calculating, consider
the function of the past participle used. Note that a participle
placed after a noun often has the same ‘identifying’ function
as a relative clause. Compare:

a) the only place left
b) the only place that was left

In the above example, those is used instead of a noun. Re-
construct the whole phrase and translate it into Russian.

6. Consider the sentence Such equations are said to be of degree
3 ... (L. 16) We often use a passive to report what people
say, think, etc., particularly if we want to avoid mentioning
who said or thought what we were reporting:
Everyone was asked to bring some food to the party.
A common way of reporting what is said by people in general
is to use it + passive verb + that + clause:
It is said that this problem has already been solved.
An alternative to it + passive verb + that + clause is to use
subject + passive verb + to-infinitive (Complex Subject).
This problem is said to have already been solved.
Come back to the sentence Such equations ... (1. 16), para-
phrase it using it + passive verb + that + clause and translate
it into Russian. What other verbs can be used in Complex
Subject?

7. Compare the following sentences:

1) In general, cubic equations for elliptic curves take the
form y? = 23 + ax® + bz + ¢, where a, b and ¢ are whole
numbers that satisfy some simple conditions.

2) Such equations are said to be of degree 3, because the
highest exponent they contain is a cube.

3) For complicated equations, typically of degree 4 or higher,
the number of solutions is always finite—a fact called
Mordell’s conjecture, which the German mathematician
Gerd Faltings proved in 1983.

18
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10.

11.
12.

All these sentences contain relative clauses. A relative clause
gives more information about one of the nouns in the main
clause. Some relative clauses (defining relative clauses) are
used to specify which person or thing we are referring to, or
which type of person or thing we are referring to. Notice that
we don’t put a comma between the noun and a defining rela-
tive clause. Relative clauses begin with a relative pronoun: a
wh-word (who, which, etc.) or that (1). The relative pronoun
can be omitted (2).

Some relative clauses are used to add extra information about
a noun, but this information is not necessary to explain which
person or thing we are referring to (non-defining relative
clauses). Don’t use that at the beginning of a non-defining
clause. Use who (whom, whose) or which instead. Notice
that we put a comma between the noun and a non-defining
relative clause and another comma at the end of this clause
if it is not also the end of a sentence (3).

Identify the noun to which the italicized clauses refer. Find
in the text other examples of the above type of clauses.

Note the translation of either/neither: either—umro6omn, either

. or—m ... wia (aubo ... aubo), neither—1) un oguu
(u3) + me (x ckazyemoMmy); 2) a Takxke + He (K CKazyeMoMmy),
neither ... nor—uu ... Hu. Translate the sentence Linear or

quadratic ... (1. 21-23).

Consider the word combination to be the case (1. 23). It is
translated uMeTs MECTO, IPOUCXOANTE.

One of the meanings of the word challenge (n.) is something
that tests strength, skill, or ability especially in a way that
is interesting, e.g. | liked the speed and challenge of racing.
Translate the sentence: But elliptic curves present a unique
challenge. (1. 26).

Use your dictionary to check pronunciation: finite—infinite.
Compare the functions of —ing forms in:

a) there is no easy way of telling (1. 28)
b) ... problems concerning elliptic curves (1. 29)
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13.

14.

15.

16.
17.

18.

19.

20

c) ... mathematicians often reexamine them wusing mod-
ular arithmetic (1. 29)
d) ... the corresponding modular forms (1. 83)
To simplify problems ..., mathematicians often reexamine
(1. 29). To grasp some understanding of the original
infinite problem, mathematicians observe ... (1. 40). What
is the function of the infinitive in these sentences? Cf. also
2, p. 6.
Read lines 29-37 and state the function of the following link-
ing words: next, then, eventually.
Translate the sentence What makes (11. 53-55) into Russian,
paying attention to the functions of the subordinate clauses
What makes ... and ... that one can ... .
What does the phrasal verb to give up (1. 65) mean?
Look at the following word combinations and think about the
functions of past participles:
a) objects called elliptic curves
b) they are named
c¢) so-called rational solutions
d) he became enamored with
e) complicated equations
f) to a limited extent
In the sentence In particular, because modular forms ... (1. 73—
77), the word that is used three times. Identify where that
replaces a noun. What is the noun? Translate the sentence
into Russian. In lines 78-86 find the sentences with that in
the same function and translate them.
Learn to distinguish between three types of conditional sen-
tences shown in the following examples. Translate them into
Russian.
1) If I work hard, I will pass my exams. (real conditions
mainly for future possibilities)
2) If T worked hard, I would pass my exams. (‘unreal’
conditions or improbable conditions in the present or
future)



Fermat’s Last Theorem

20.

21.

22.

23.

24.

3) If I had worked hard, I would have passed my exams.
(‘unreal’ conditions or impossible conditions in the past)

Now, come back to the text (1l. 78-79). What type of condi-
tional sentence is this? Translate the sentence into Russian.
Note that a conditional clause can come before or after the
main clause. We often use a comma when the if-clause comes
first. What other conjunctions can be used to introduce con-
ditional clauses?
Find a word in the text (ll. 78-86) with the meaning up to
this time.
Compare the uses of other (1. 86 and 1. 89). What is the
difference?
In due course means at some time in the future when it is
the right time, but not before: The committee will consider
your application in due course. Find it in the text (1. 94) and
translate it into Russian.
Give equivalents of the following:

a) OPYTUMU CIOBAMU
) COBEpIIEHHO APyras 06IACTh MATEMATUKY
) Ha OATHAAUATHI I€Hb
) B 5TOM OTHOIIEHUU
€) [0 OIpPEIENIeHHON CTEeNeHN

) Ta 3amada CBOIUTCA K

) mo cymecTBy

) B IEUCTBUTEILHOCTHU

) He CIexyer ImyTaThb ¢

j) MCKaTh OMMOKY B BBIYUCICHUAX

Discuss the following questions in pairs:

1) “At age 10, Wiles became enamored with Fermat’s last
theorem. ... His schoolteachers discouraged him from
wasting time on the impossible.” But later he came
back to the theorem again. How did it happen?

2) “To simplify problems concerning elliptic curves, math-
ematicians often reexamine them using modular arith-
metic.” What is the method they follow? What advan-
tage does modular arithmetic have?
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3) “... as the decades passed the hypothesis became in-
creasingly influential.” Which hypothesis is meant?
Read Part IV at a quick comfortable pace to answer the ques-
tions: What was a new strategy for attacking Fermat’s last theo-
rem? Then read it again more carefully to do the exercises.

THE MISSING LINK

In the fall of 1984, at a symposium in Oberwolfach, Germany, Ger-
hard Frey of the University of Saarland gave a lecture that hinted
at a new strategy for attacking Fermat’s last theorem. The theo-
rem asserts that Fermat’s equation has no positive whole-number
solutions. To test a statement of this type, mathematicians fre-
quently assume that it is false and then explore the consequences.
To say that Fermat’s last theorem is false is to say that there are
two perfect nth powers whose sum is a third nth power.

Frey’s idea proceeded as follows: Suppose that A and B are
perfect nth powers of two numbers such that A + B is again an
nth power—that is, they are a solution to Fermat’s equation. A
and B can then be used as coefficients in a special elliptic curve:
y? = z(z — A)(x + B). A quantity that is routinely calculated
whenever one studies elliptic curves is the “discriminant” of the
elliptic curve, A2B?(A + B)?. Because A and B are solutions to
the Fermat equation, the discriminant is a perfect nth power.

The crucial point in Frey’s tactic is that if Fermat’s last theo-
rem is false, then whole-number solutions such as A and B can be
used to construct an elliptic curve whose discriminant is a perfect
nth power. So a proof that the discriminant of an elliptic curve
can never be an nth power would contain, implicitly, a proof of
Fermat’s last theorem. Frey saw no way to construct that proof.
He did, however, suspect that an elliptic curve whose discriminant
was a perfect nth power-if it existed-could not be modular. In other
words, such an elliptic curve would defy the Shimura-Taniyama con-
jecture. Running the argument backwards, Frey pointed out that
if someone proved that the Shimura-Taniyama conjecture is true
and that the elliptic equation y? = x(z — A)(x + B) is not modular,
then they would have shown that the elliptic equation cannot exist.
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In that case, the solution to Fermat’s equation cannot exist, and
Fermat’s last theorem is proved true.

Many mathematicians explored this link between Fermat and
Shimura-Taniyama. Their first goal was to show that the Frey el-
liptic curve, y? = x(x — A)(x + B), was in fact not modular. Jean-
Pierre Serre of the College of France and Barry Mazur of Harvard
University made important contributions in this direction. And in
June 1986 one of us (Ribet) at last constructed a complete proof
of the assertion. It is not possible to describe the full argument in
this article, but we will give a few hints.

To begin, Ribet’s proof depends on a geometric method for
“adding” two points on an elliptic curve. Visually, the idea is that
if you project a line through a pair of distinct solutions, P, and P>,
the line cuts the curve at a third point, which we might provision-
ally call the sum of P, and P,. A slightly more complicated but
more valuable version of this addition is as follows: first add two
points and derive a new point, P3, as already described, and then
reflect this point through the z axis to get the final sum, Q.

This special form of addition can be applied to any pair of points
within the infinite set of all points on an elliptic curve, but this
operation is particularly interesting because there are finite sets of
points having the crucial property that the sum of any two points
in the set is again in the set. These finite sets of points form a
group: a set of points that obeys a handful of simple axioms. It
turns out that if the elliptic curve is modular, so are the points in
each finite group of the elliptic curve. What Ribet proved is that a
specific finite group of Frey’s curve cannot be modular, ruling out
the modularity of the whole curve.

For three and half centuries, the last theorem had been an iso-
lated problem, a curious and impossible riddle on the edge of math-
ematics. In 1986 Ribet, building on Frey’s work, had brought it
center stage. It was possible to prove Fermat’s last theorem by
proving the Shimura-Taniyama conjecture. Wiles, who was by now
a professor at Princeton, wasted no time. For seven years, he worked
in complete secrecy. Not only did he want to avoid the pressure
of public attention, but he hoped to keep others from copying his
ideas. During this period, only his wife learned of his obsession—on
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their honeymoon.

1.
2.

3.

24

Fall (1. 1) means autumn in AmE.
Identify the part of speech of the —ing forms attacking (1. 3),
proving (1. 62) and translate them into Russian.
The infinitive is used in different syntactic functions. Some
of them we have already dealt with (see 2, p. 8-9). To re-
view the others, consult any grammar book, then consider
the following sentences and translate them into Russian:

a) To test a statement of this type, mathematicians fre-

quently assume that ... . (1. 5)
b) To say that Fermat’s theorem is false is to say that

(L
¢) ... then whole-number solutions such as A and B can
be used to construct an elliptic curve ... . (1. 18)

d) Frey saw no way to construct that proof. (1. 22)
e) Their first goal was to show that ... . (l. 33)
f) It is not possible to describe the full argument . .. . (1. 38)
g) To begin, Ribet’s proof depends on geometric method
... (1. 40)
Note the position for adverbs of frequency (e.g. sometimes,
occasionaly, always, often, usually, never) that go with the
verb:
a) after am/is/are/was/were
She is never at home these days.
b) after auxiliary verbs
He can never come in time.
c) before other verbs
You usually read better than this.
In this part of the text, find some sentences where the adverbs
of frequency are used.
Find the English equivalent of i. e. (11. 9-16)
Note that there are two ways to use proper nouns as modifiers:
Fermat’s equations (1. 11); the Fermat equation (1. 16)
Look through the text again to find some other examples.
Can you work out the rule?
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7. Consider the sentence: So a proof that ... (1. 20). In the
main clause, find its subject and verb.

8. In the sentence, He did, however, suspect ... (1. 23), identify
the function of the verb to do and translate the sentence into
Russian.

9. Give Russian equivalents of: the idea proceeded as follows,
whenever one studies, the crucial point, running the arqgu-
ment backwards, a slightly more complicated but more valuable
version, to keep others from copying his ideas, a lecture that
hinted at a new strategy, by now, a curious and impossible
riddle on the edge of mathematics.

10. Go through the paragraph (1. 48-57). This time, comment on
the use of articles (a, the, zero) and translate the paragraph
into Russian.?

11. Find the emphatic structure (Il. 58-67) and translate the
whole sentence into Russian. (See also 3, p. 17)

12. Write a summary of this part of the text.

Read Part V without consulting any dictionary. Try to guess
the meaning of the unknown words by thinking about the context in
which they are found. Here Wiles “describes his experience of doing
mathematics as a journey through a dark, unexplored mansion.”
Reproduce it.

SEVEN YEARS OF SECRECY

Wiles had to pull together many of the major findings of 20th-
century number theory. When those ideas were inadequate, he was
forced to create other tools and techniques. He describes his experi-
ence of doing mathematics as a journey through a dark, unexplored
mansion: “You enter the first room of the mansion, and it’s com-
pletely dark. You stumble around bumping into the furniture, but
gradually you learn where each piece of furniture is. Finally, after
six months or so, you find the light switch. You turn it on, and
suddenly it’s all illuminated. You can see exactly where you were.

2Note that the meaning of the English article may sometimes be expressed
in Russian by means of the words xaxod-nu6yde, odun, aobot (the indefinite
article), amom, mom cameiii (the definite article), soo6we (zero).
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Then you move into the next room and spend another six months in
the dark. So each of these breakthroughs, while sometimes they’re
momentary, sometimes over a period of a day or two, they are the
culmination of, and couldn’t exist without, the many months of
stumbling around in the dark that precede them.”

As it turned out, Wiles did not have to prove the full Shimura-
Taniyama conjecture. Instead he had to show only that a particular
subset of elliptic curves—one that would include the hypothetical
elliptic curve Frey proposed, should it exist—is modular. It wasn’t
really much of a simplification. This subset is still infinite in size
and includes the majority of interesting cases. Wiles’s strategy used
the same techniques employed by Ribet, plus many more. And as
with Ribet’s argument, it is possible to give only a hint of the main
points involved.

The difficulty was to show that every elliptic curve in Wiles’s
subset is modular. To do so, Wiles exploited the group property
of points on the elliptic curves and applied a theorem of Robert
P. Langlands of the Institute for Advanced Study in Princeton, N.J.,
and Jerrold Tunnell of Rutgers University. The theorem shows, for
each elliptic curve in Wiles’s set, that a specific group of points
inside the elliptic curve is modular. This requirement is necessary
but not sufficient to demonstrate that the elliptic curve as a whole
is modular.

The group in question has only nine elements, so one might
imagine that its modularity represents an extremely small first step
toward complete modularity. To close this gap, Wiles wanted to
examine increasingly larger groups, stepping from groups of size 9
to 92, or 81, then to 93, or 729, and so on. If he could reach an
infinitely large group and prove that it, too, is modular, that would
be equivalent to proving that the entire curve is modular.

Wiles accomplished this task via a process loosely based on in-
duction. He had to show that if one group was modular, then so
must be the next larger group. This approach is similar to top-
pling dominoes: to knock down an infinite number of dominoes,
one merely has to ensure that knocking down any one domino will
always topple the next. Eventually Wiles felt confident that his
proof was complete, and on June 23, 1993, he announced his result
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at a conference at the Isaac Newton Mathematical Sciences Insti-
tute in Cambridge. His secret research program had been a success,
and the mathematical community and the world’s press were sur-
prised and delighted by his proof. The front page of the New York
Times exclaimed, “At Last, Shout of ‘Eureka!” in Age-Old Math
Mystery.”

As the media circus intensified, the official peer-review process
began. Almost immediately, Nicholas M. Katz of Princeton uncov-
ered a fundamental and devastating flaw in one stage of Wiles’s
argument. In his induction process, Wiles had borrowed a method
from Victor A. Kolyvagin of Johns Hopkins University and Matthias
Flach of the California Institute of Technology to show that the
group is modular. But it now seemed that this method could not
be relied on in this particular instance. Wiles’s childhood dream
had turned into a nightmare.

1. To pull sth together (phr v) means to improve something by
organizing it more effectively.

2. To make have to negative, we use an auxiliary verb. Translate
the sentence: ... Wiles didn’t have to ... (1. 15). Explain
what is the difference between must not and do not have to.

3. What does one mean (1. 17, 1. 33, 1. 44(2))?

4. Should it exist (1. 18) means if it should exist, here inversion
takes place to express emphasis. Translate the sentence into
Russian.

5. Give a Russian equivalent of much of a simplification (1. 19).

6. Compare —ed forms. Identify the parts of speech and their
functions: strategy used (1. 20), techniques employed (1. 21),
points involved (1. 23).

7. Identify the words used by the authors as equivalent to to do
so (1. 25).

8. The group in question (1. 33) is the group that is being dis-
cussed or talked about. Explain which group is meant. Trans-
late the sentence into Russian.

9. In the sentence If he could reach ... (1. 37), comment on the
tense forms used and give a Russian equivalent.
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10. Find a word in the text with the same or similar meaning to
the following: by way of (sth) or through.

11. In this text, the meaning of circus (1. 53) can be explained as
follows: if someone describes an event as a circus, they mean
that they think it is only being done to attract attention or to
impress people, and will not achieve anything. Think about
its Russian equivalent.

12. Peer means 1) someone of the same age, social class etc as
you; 2) a member of the British nobility who has the right to
sit in the House of Lords. What is the meaning of peer (1. 53)
in the text? Translate the sentence.

13. Try to explain the authors’ use of the tense forms (Il. 53-61).

14. See if you remember: to pull together major findings, to be
forced to do sth, to create tools and techniques, to do math-
ematics, as a whole, the group in question, to be similar to,
to uncover a flaw, to accomplish a task, to borrow a method
from sb, to rely on.

Read Part VI without consulting any dictionary. What is meant
by they found the vital fix?

FINDING THE FIX

For the next 14 months, Wiles hid himself away, discussing the error
only with his former student Richard Taylor. Together they wrestled
with the problem, trying to patch up the method Wiles had already
used and applying other tools that he had previously rejected. They
were at the point of admitting defeat and releasing the flawed proof
so that others could try to correct it, when, on September 19, 1994,
they found the vital fix. Many years earlier Wiles had considered
using an alternative approach based on so-called Iwasawa theory,
but it floundered, and he abandoned it. Now he realized that what
was causing the Kolyvagin-Flach method to fail was exactly what
would make the Iwasawa theory approach succeed.

Wiles recalls his reaction to the discovery: “It was so indescrib-
ably beautiful; it was so simple and so elegant. The first night I
went back home and slept on it. I checked through it again the
next morning, and I went down and told my wife, ‘I’'ve got it. I
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think I’ve found it.” And it was so unexpected that she thought I
was talking about a children’s toy or something, and she said, ‘Got
what?’ I said, ‘I've fixed my proof. I've got it.””

For Wiles, the award of the Wolfskehl Prize marks the end of
an obsession that lasted more than 30 years: “Having solved this
problem, there’s certainly a sense of freedom. I was so obsessed
by this problem that for eight years I was thinking about it all
of the time—when I woke up in the morning to when I went to
sleep at night. That particular odyssey is now over. My mind is at
rest.” For other mathematicians, though, major questions remain.
In particular, all agree that Wiles’s proof is far too complicated
and modern to be the one that Fermat had in mind when he wrote
his marginal note. Either Fermat was mistaken, and his proof, if it
existed, was flawed, or a simple and cunning proof awaits discovery.

1. Compare: Together they wrestled with the problem, trying
to patch up the method ... (l. 3) Having solved this prob-
lem, there’s certainly a sense of freedom. (1. 20) Explain the
difference in meaning expressed by the participles and their
translation.

2. Identify the sentences with the Past Continuous. Explain why
this form is used there.

3. What is the tense form in the sentences with the contrac-
tions (1. 12-18)?

4. Say which sentences contain phrasal verbs, explaining why
you think they are phrasal verbs.

5. Compare:

That particular odyssey ... (1. 24)
In particular, ... (1. 26)
What are the functions of the word particular?

6. Find a word combination in the text with the same or similar
meaning to the following: to be thinking about or considering
sth for a particular purpose.

7. Give Russian equivalents of: they wrestled with the problem,
trying to patch up the method, tools ... previously rejected,
they were at the point of admitting defeat, the flawed proof,
the vital fix, the proof is far too complicated, either ... or.
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Video

1.

Having read the text, watch the video Fermat’s Last Theo-
rem co-produced by Simon Singh, one of the authors of the
article. In this documentary Andrew Wiles tells his story.
As you watch the video, take notes for they will help you in
discussion.

. Having watched the video, choose the topic or topics you

would like to discuss in pairs.

Choose a student to take the role of A. Wiles and ask him
questions.

Using your notes, give an oral summary of what you have
watched.

What do you think?

1.
2.

Why has this theorem been so difficult to prove?
Are mathematicians finally satisfied with Andrew Wiles’ proof
of Fermat’s last theorem?

If you are interested in the opinion of experts, go to:
http://www.sciam.com/askexpert/math/math6.html

Translation

Translate the following sentences into English:

1.

2.

30

23 mroua 1993 r. 9. Yamr3 coOoOmMmI MATEeMATUICCKOMY CO-
O6IIECTBY, 9TO OH JOKAa3aJ1 3HaMeHUTyw TeopeMmy Pepma.
Ha momcku mokasaTenbCTBa TEOPEMBI Y HErO YILIO MeCATD
JIET MHTEHCUBHOTO Tpyma. Ilpm sTom J. Yamrs paboTan B
MTOJTHOW W3O0JIAIAN, TIOTOMY ITO OH XOTEJ He TOIbKO M30eXKaTh
MOBBIMIEHHOT'O UHTEPECa OOLUIECTBEHHOCTH, HO U HE NATh BO3-
MOXKHOCTH IPYTUM BOCIOJIB30BATLCA €00 UIEAMU.

CTo cTpaHuIl TEKCTAa, KOTOPBIE IPEACTABIAIOT COO0H TOKA3a-
TEIbCTBO, COEVHUIN B ce0e MOCTUKEHUs PA3HBIX 0OJaCTen
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10.

MaTeMaTUKM, TAKUX, HAIIPUMED, KaK aaredbpanieckas reome-
TPUA ¥ KOMILICKCHBIN QHAIAS.

. B 1950-x rogax I'. Mlumypa u FO. Tanuama BLigBUHYIN HE-

KYIO UIe10, KOTOPAas BIOCAEICTBIY ObLIA UCIOAb30BAHA J. Yau-
JI30M B €ro JOKa3aTelbCTBe.

. Ux mpeanonoxkenue Kacaioch MOIYIAPHLIX (HDYHKIWUA, KOTO-

pBIE MMEIOT JeJ0 ¢ KOMILUIEKCHBIMU duciamMu Buga (z + iy),
e T U Y—IeUCTBUTENbHbIE YUCIa, (—MHAMOE 9ucao (pas-
HOE /—1).

Ocennio 1984 r. I'. ®pen Ha OTHON U3 CBOUX JEKIUU MOACKA-
3aJ1 HOBBIU TMOAXO[ K PCIICHUIO TeopeMbl depma.

Kaxk BoisacHmIOCh mo3xke, J. YaWisy He HYXKHO OBLIO TOKA3bI-
Barb Bcio runore3y ['. umypser u FO. Tanuamer. Emy #yx)uO
OBLIO JIXIIB [I0KA3aTh, ITO HEKOE II0IMHOKECTBO /LI TUIE-
CKUX KPUBBIX MOAyasapHo. Ho caemaTb 3TO GBLIO HE TaK-TO
pOCTO.

D. Yamrs pemmn 3a1ady METOAOM WHAYKIMU. EMy HYXKHO
OBLIO TOKA3aTh, YTO €CIM OJHA I'PYNIA MOLYJIAPHA, TO MO-
OYJIAPHOU JOMKHA OBITH U CACAYIONIAA OOMbINASA TPYIIIA.
Korga 3. Yamisa yxe mo3apas/aanu ¢ 6JIeCTAIIM Pe3yaIbTa-
ToM ero muoroserren paGorer, H.M. Kan o6uapyxun cymue-
CTBEHHYIO OIUOKY B €ro foKas3aTeabcTBe. Ha ee TukBUqanmio
yuwio eme 14 Mecsues.

O HaKO, HECMOTPSA HA TO, YTO MOJYIEHHBIN O. YAUT30M pe-
3yJbTAT BOCIPUHAT BCEMU KAK BBIJAOIIEECS JOCTIKEHNE Mar-
TeMaTUKu XX B., MHOTHE CIEIMUAIACTEL CINTAIOT, ITO MPeI-
CTaBJEHHOE UM [OKA3ATEIbCTBO OCHOBAHO HA MOCTUKEHUAX
COBPEMEHHOU HAyKW, TTO3TOMY BPSAI JU 3TO TO NOKA3ATEIb-
CTBO, 0 KOTOpOoM mucaa Pdepma.
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Black Holes

Reading

Here is an early history of black holes:

1900 Max Planck discovers black-body radiation.

1905 In a paper on black-body radiation, Albert Einstein shows
that light can be viewed as particles (photons).

1915 Through spectroscopic studies, astronomer Walter S. Adams
identifies Sirius’s faint companion (which causes Sirius to wob-
ble slightly as it moves) as a small, hot, dense star—a white
dwarf.

1916 Einstein published his general theory of relativity, producing
equations that describe gravity.

1916 Karl Schwarzschild shows that a radius of a collapsing object
exists at which Einstein’s gravity equations become “singular”—
time vanishes, and space becomes infinite.

1924 Einstein publishes Satyendra Nath Bose’s work on black-body
radiation, developing so-called quantum statistics for one class
of particles (such as photons).

1924 Sir Arthur Eddington proposes that gravity can strip away
electrons from protons in a white dwarf.

1925 Wolfgang Pauli formulates the exclusion principle, which states
that certain particles cannot be in exactly the same quantum-
mechanical state.

1926 Enrico Fermi and P.A.M. Dirac develop quantum statistics for
particles that obey Pauli’s exclusion principle (such as elec-
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trons and protons). When compressed, such particles fly away
from one another, creating a so-called degeneracy pressure.

1930 Using quantum statistics and Eddington’s work on stars, Sub-
rahmanyan Chandrasekhar finds that the upper mass limit for
white dwarfs is 1.4 times the mass of the sun, suggesting that
more massive stars collapse into oblivion. Eddington makes
fun of him.

1932 James Chadwick discovers the neutron. Its existence leads re-
searchers to wonder if “neutron stars” could be an alternative
to white dwarfs.

1939 Sparked by conversations with colleagues, Einstein tries to
kill off the Schwarzschild radius once and for all: he concludes
that black holes are impossible in a paper published in Annals
of Mathematics.

1939 Using ideas of collapsing neutron stars and white dwarfs,
J. Robert Oppenheimer and his student Hartland S. Snyder
show how a black hole can form.

Now you are going to read an article about the theory of black
holes and the role played in it by Albert Einstein. The text is
divided into six parts, each of which is followed by exercises. Some
of them contain notes to simplify a task. After reading Part I for
the first time to get the general idea, read it again more carefully
and do the exercises. The same procedure should be followed when
you pass on to the next part of the text and so on.

1. Look through the title and the annotation of the article be-
low. The word reluctant means slow and unwilling: he gave a
reluctant smile. Think of its Russian equivalent and translate
the title.

THE RELUCTANT FATHER OF BLACK HOLES

Albert Einstein’s equations of gravity are the foundation of the modern
view of black holes; ironically, he used the equations in trying to prove
these objects cannot exist

by Jeremy Bernstein
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Great science sometimes produces a legacy that outstrips not
only the imagination of its practitioners but also their intentions.
A case in point is the early development of the theory of black holes
and, above all, the role played in it by Albert Einstein. In 1939 Ein-
stein published a paper in the journal Annals of Mathematics with
the daunting title “On a Stationary System with Spherical Sym-
metry Consisting of Many Gravitating Masses.” With it, Einstein
sought to prove that black holes—celestial objects so dense that
their gravity prevents even light from escaping—were impossible.

The irony is that, to make his case, he used his own general
theory of relativity and gravitation, published in 1916—the very
theory that is now used to argue that black holes are not only pos-
sible but, for many astronomical objects, inevitable. Indeed, a few
months after Einstein’s rejection of black holes appeared—and with
no reference to it—1J. Robert Oppenheimer and his student Hartland
S.Snyder published a paper entitled “On Continued Gravitational
Contraction.” That work used Einstein’s general theory of relativ-
ity to show, for the first time in the context of modern physics, how
black holes could form.

Perhaps even more ironically, the modern study of black holes,
and more generally that of collapsing stars, builds on a completely
different aspect of Einstein’s legacy—namely, his invention of quan-
tum-statistical mechanics. Without the effects predicted by quan-
tum statistics, every astronomical object would eventually collapse
into a black hole, yielding a universe that would bear no resem-
blance to the one we actually live in.

2. A case in point (1. 3) means a clear example of a situation,
problem etc that you are discussing or explaining. The word
case is also used here in the expression to make his case (1. 10).
Explain which case is meant and give Russian equivalents of
both expressions. Cf. also 9, p. 19.

3. Find a word in the text (ll. 1-19) with the same or similar
meaning to the following: to look for, try to get.

4. The adjective very is used to emphasize a noun: We climbed
to the very top of the mountain. Explain its meaning in the
very theory (1. 11).
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5. Identify the parts of speech and their functions of the follow-
ing —ed forms: played (1. 4), published (1. 5,1. 11, 1. 16), used
(1. 10, 1. 12, 1. 17), appeared (1. 14), entitled (1. 16), predicted
(1. 23).

6. In lines 10-19, find an infinitive clause of purpose and trans-
late it into Russian.

7. Identify the word (ll. 20-26) used by the author to clarify his
ideas.

8. Compare different functions of that (1. 10, 1. 17, 1. 21). What
is the plural form of that?

9. Consider the functions of the —ing forms: collapsing (1. 21)
and yielding (1. 25).

10. What noun is replaced by one to avoid repeating (1. 26)?

11. When relative pronouns are left out, this can make reading
difficult. Study the last sentence and find the relative clause
of the above type. Make this sentence easier to read by adding
a relative pronoun.

12. Put in suitable prepositions:

a) a case ... point
b) the role played ... it

¢ ... Continued Gravitational Contraction’

o

)
)
d) to prevent light ... escaping
)
)

e) with no reference ... it

f) the modern study ... black holes builds ... a completely
different aspect ... Einstein’s legacy

g) the effects predicted ... quantum statistics

h) every astronomical object would eventually collapse ...
a black hole

i) to bear no resemblance ... sth

13. Check up for comprehension: What is the role of Albert Ein-
stein in the early development of the theory of black holes?

Now read Part II. Use your dictionary to check new words and
expressions, then move on to the exercises.
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BOSE, EINSTEIN AND STATISTICS

Einstein’s creation of quantum statistics was inspired by a letter he
received in June 1924 from a then unknown young Indian physi-
cist named Satyendra Nath Bose. Along with Bose’s letter came
a manuscript that had already been rejected by one British scien-
tific publication. After reading the manuscript, Einstein translated
it himself into German and arranged to have it published in the
prestigious journal Zeitschrift fiir Physik.

Why did Einstein think that this manuscript was so important?
For two decades, he had been struggling with the nature of elec-
tromagnetic radiation—especially the radiation trapped inside a
heated container that attains the same temperature as its walls.
At the turn of the century the German physicist Max Planck had
discovered the mathematical function that describes how the var-
ious wavelengths, or colors, of this “black body” radiation vary in
intensity. It turns out that the form of this spectrum does not
depend on the material of the container walls. Only the tempera-
ture of the radiation matters. (A striking example of black-body
radiation is the photons left over from the big bang, in which case
the entire universe is the “container.” The temperature of these
photons was recently measured at 2.726 £ 0.002 kelvins.)

Somewhat serendipitously, Bose had worked out the statistical
mechanics of black-body radiation—that is, he derived the Planck
law from a mathematical, quantum-mechanical perspective. That
outcome caught Einstein’s attention. But being Einstein, he took
the matter a step further. He used the same methods to exam-
ine the statistical mechanics of a gas of massive molecules obeying
the same kinds of rules that Bose had used for the photons. He
derived the analogue of the Planck law for this case and noticed
something absolutely remarkable. If one cools the gas of particles
obeying so-called Bose-Einstein statistics, then at a certain critical
temperature all the molecules suddenly collect themselves into a
“degenerate,” or single, state. That state is now known as Bose-
Einstein condensation (although Bose had nothing to do with it).

An interesting example is a gas made up of the common isotope
helium 4, whose nucleus consists of two protons and two neutrons.
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At a temperature of 2.18 kelvins, this gas turns into a liquid that
has the most uncanny properties one can imagine, including fric-
tionless flow (that is, superfluidity). U.S. researchers in the past
year accomplished the difficult task of cooling other kinds of atoms
to several billionths of a kelvin to achieve a Bose-Einstein conden-
sate.

Not all the particles in nature, however, show this condensation.
In 1925, just after Einstein published his papers on the condensa-
tion, the Austrian-born physicist Wolfgang Pauli identified a second
class of particles, which includes the electron, proton and neutron,
that obeyed different properties. He found that no two such iden-
tical particles—two electrons, for example—can ever be in exactly
the same quantum-mechanical state, a property that has since be-
come known as the Pauli exclusion principle. In 1926 Enrico Fermi
and P.A.M. Dirac invented the quantum statistics of these particles,
making them the analogue of the Bose-Einstein statistics.

Because of the Pauli principle, the last thing in the world these
particles want to do at low temperatures is to condense. In fact,
they exhibit just the opposite tendency. If you compress, say, a
gas of electrons, cooling it to very low temperatures and shrinking
its volume, the electrons are forced to begin invading one another’s
space. But Pauli’s principle forbids this, so they dart away from
one another at speeds that can approach that of light. For electrons
and the other Pauli particles, the pressure created by these fleeing
particles—the “degeneracy pressure”—persists even if the gas is
cooled to absolute zero. It has nothing to do with the fact that the
electrons repel one another electrically. Neutrons, which have no
charge, do the same thing. It is pure quantum physics.

1. Write out all the examples where a proper noun is used to
modify another noun. E.g. FEinstein’s creation. Compare
your examples. Explain the use or omission of the article be-
fore proper nouns.

2. Note the difference between then as an adverb and as an
adjective.
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Adverb of time
a) Then means ‘at that time’ or ‘after that’.
E.g. We met in 1998. | was still a student then.

b) Then means ‘after that’ in a series of points or events,
first ... then.

Linking adverb

a) Then can mean ‘in that case’ (mainly in spoken English).
E.g. 'They've just telephoned to say John's in hospital.’
‘Then we'd better go immediately.’

b) We sometimes use if ... then to emphasize that one
thing depends on another.
E.g. If z =3 and y = 5 then zy = 15
Consider the sentence If one cools ... (Il. 29-32).
Translate it into Russian.

Adjective ‘The then President, Director, etc.” means ‘the
President, Director, etc. at a particular time in the past’.
What is the Russian equivalent of a then unknown young In-
dian physicist (1. 2)?

. In lines 1-7, find a sentence with inversion. Cf. also 3, p. 17.
Why is inversion used here?

. Put in reflexive pronouns.

I — myself we —

you — you —
he — they —
she —

it —

Consider the use of reflexive pronouns in the text (1. 6, 1. 31).
. Have something done: arrange something to be done. Notice
the difference in meaning;:

I have typed my report. = I typed it myself.

My report has been typed. = Someone typed it.

I have had my report typed. = I arranged/paid for someone
to type it for me.
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In lines 1-20, identify the above structure and translate it
into Russian.

Comment on the use of tenses (1. 8-20).

What part of speech is matter in 1. 17 and 1. 257 Compare
the functions, give Russian equivalents.

Consider the relative clauses (1. 11, 1. 13, 1. 18). Comment on
the use of a comma or its omission. Cf. also 7, pp. 18-19.
Somewhat means ‘more than a little but not very’: The price
is somewhat higher than I expected.

Serendipity means ‘the natural ability to make interesting or
valuable discoveries by accident’.

What is the Russian equivalent of somewhat serendipitously
(L. 21)?

Identify the function of that is (1. 22, 1. 38).

What is meant by this case (1. 28) and that state (1. 32)?
Consider the sentence In 1925, just after ... (1. 43-46). It
contains two relative clauses. Is there any difference between
them? Identify the nouns to which these clauses refer. Cf.
also 7, pp. 18-19.

Friction is a noun. What part of speech is frictionless? (1. 37)
Compare:

They blamed themselves for the mistake. = They both took
the blame.

They blamed each other for the mistake. = The one blamed
the other.

You can use one another instead of each other. However,
sometimes a distinction is drawn between each other (used
to refer to two people etc) and one another (used to refer to
more than two). Find the sentences (3) with one another in
the text and translate them into Russian.

Insert prepositions:

Along ... Bose’s letter came a manuscript; he translated it
himself ... German; ... two decades, he had been struggling
... the nature ... electromagnetic radiation; ... the turn of
the century; the function describes how the various wave-
lengths or colors vary ... intensity; it turns ... that; this
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16.
17.

18.

19.

spectrum does not depend ... the material; he worked ... the
statistical mechanics ... black-body radiation; a gas made . ..
of the common isotope helium 4, whose nucleus consists . ..
two protons and two neutrons; this gas turns ... a liquid; his
papers ... the condensation.

Explain the function of the word say (1. 54).

Put the following phrases from the text into your own words:

a) ... creation ... was inspired by a letter ... (1. 1)

b) ... aletter ... from a then unknown ... physicist ...
(1. 1-2)

c) at the turn of the century ... (1. 12)

d) ... the temperature ... matters (ll. 16-17)

e) Somewhat serendipitously ... (1. 21)

f) ... he took the matter a step further (Il. 24-25)

g) ... although Bose had nothing to do with it (1. 33)

h) ... the last thing in the world these particles want to

do ... (ll. 52-53)
See if you remember:
to depend on, to derive a law, to obey rules, to have sth to
do with sth, to consist of, to become known as, to exhibit a
tendency, to do the same thing, a principle forbids, because
of this principle, it turns out that, so-called Bose-Einstein
statistics.
Check up for comprehension:

1. Why did Einstein think that Bose’s manuscript was so
important?

2. What method did Einstein use to examine the statisti-
cal mechanics of a gas of massive molecules obeying the
same kinds of rules that Bose had used for the photons?

3. What is the Pauli exclusion principle?

Read Part III. Use your dictionary to check new words and
expressions, then pass on to the exercises.

QUANTUM STATISTICS AND WHITE DWARFS

But what has quantum statistics got to do with the stars? Before
the turn of the century, astronomers had begun to identify a class of
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peculiar stars that are small and dim: white dwarfs. The one that
accompanies Sirius, the brightest star in the heavens, has the mass
of the sun but emits about 1/360 the light. Given their mass and
size, white dwarfs must be humongously dense. Sirius’s companion
is some 61,000 times denser than water. What are these bizarre
objects? Enter Sir Arthur Eddington.

When I began studying physics in the late 1940s, Eddington was
a hero of mine but for the wrong reasons. I knew nothing about his
great work in astronomy. I admired his popular books (which, since
I have learned more about physics, now seem rather silly to me).
Eddington, who died in 1944, was a neo-Kantian who believed that
everything of significance about the universe could be learned by
examining what went on inside one’s head. But starting in the late
1910s, when Eddington led one of the two expeditions that con-
firmed Einstein’s prediction that the sun bends starlight, until the
late 1930s, when Eddington really started going off the deep end,
he was truly one of the giants of 20th-century science. He practi-
cally created the discipline that led to the first understanding of
the internal constitution of stars, the title of his classic 1926 book.
To him, white dwarfs were an affront, at least from an aesthetic
point of view. But he studied them nonetheless and came up with
a liberating idea.

In 1924 Eddington proposed that the gravitational pressure that
was squeezing the dwarf might strip some of the electrons off pro-
tons. The atoms would then lose their “boundaries” and might be
squeezed together into a small, dense package. The dwarf would
eventually stop collapsing because of the Fermi-Dirac degeneracy
pressure—that is, when the Pauli exclusion principle forced the
electrons to recoil from one another.

The understanding of white dwarfs took another step forward
in July 1930, when Subrahmanyan Chandrasekhar, who was 19,
was on board a ship sailing from Madras to Southampton. He had
been accepted by the British physicist R.H.Fowler to study with
him at the University of Cambridge (where Eddington was, too).
Having read Eddington’s book on the stars and Fowler’s book on
quantum-statistical mechanics, Chandrasekhar had become fasci-
nated by white dwarfs. To pass the time during the voyage, Chan-
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drasekhar asked himself: Is there any upper limit to how massive
a white dwarf can be before it collapses under the force of its own
gravitation? His answer set off a revolution.

A white dwarf as a whole is electrically neutral, so all the elec-
trons must have a corresponding proton, which is some 2,000 times
more massive. Consequently, protons must supply the bulk of the
gravitational compression. If the dwarf is not collapsing, the de-
generacy pressure of the electrons and the gravitational collapse
of the protons must just balance. This balance, it turns out, lim-
its the number of protons and hence the mass of the dwarf. This
maximum is known as the Chandrasekhar limit and equals about
1.4 times the mass of the sun. Any dwarf more massive than this
number cannot be stable.

Chandrasekhar’s result deeply disturbed Eddington. What hap-
pens if the mass is more than 1.4 times that of the sun? He was
not pleased with the answer. Unless some mechanism could be
found for limiting the mass of any star that was eventually going
to compress itself into a dwarf, or unless Chandrasekhar’s result
was wrong, massive stars were fated to collapse gravitationally into
oblivion.

Eddington found this intolerable and proceeded to attack Chan-
drasekhar’s use of quantum statistics—both publicly and privately.
The criticism devastated Chandrasekhar. But he held his ground,
bolstered by people such as the Danish physicist Niels Bohr, who
assured him that Eddington was simply wrong and should be ig-
nored.

1. What does the pronoun one stand for? (1. 3)

2. In line 5, given (prep) is used to say that the fact that ‘white
dwarfs must be humongously dense’ is not surprising when
you consider their mass and size. Translate the sentence into
Russian.

3. In lines 1-8, find an imperative.

4. Look at the word combination a hero of mine (1. 10). Mine
is a possessive form of the personal pronoun I. What is the
difference between my and mine? My occurs before a noun,
in the position of a word such as the or a(n). Mine is never
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16.
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used in front of nouns. It can stand alone as subject, object,
etc, as pronouns can.

Compare: Have you seen my book?
No. This one is mine.

Complete the table of the possessive forms of personal pro-
nouns.
I you he she it we they
determiner: my your his her its our their
pronoun: mine  — —  — % — —

x Its is never used as a pronoun.

. In line 18, to go off the deep end (infml) means to speak very

angrily, often without cause.

Consider the sentence ‘But he studied...” (1l. 23-24). Can you
work out the meaning of the phrasal verb?

Paying special attention to the use of modal verbs, translate
lines 25-31 into Russian.

Write out the words equivalent to: moayuuTs maabHeuiIee
pasBuTUE; cCaMas APKas 3Be31a Ha HeOe; BCe, ITO BaXKHO; IO~
TBEPAUTH MPEAOIOKEHNE; [0 KPANHEN Mepe; TeM HEe MEHee.
Comment on the use of tenses (1l. 32-42).

In line 37, state the function of having read and give its Rus-
sian equivalent.

What part of speech is limit in 1. 48 and in 1. 507 Compare
the functions and give Russian equivalents.

Explain the difference between a and the: a white dwarf
(1. 43)—the dwarf (1. 46, 1. 49).

What is the author referring to when he says this balance
(1. 48), this number (1. 51), this (1. 60)?

In lines 43-52, find two words meaning ‘approximately’.
Comment on the use of the following words: so (1. 43), con-
sequently (1. 45), hence (1. 49). Why are they used there?
Read the sentence If the dwarf is not collapsing, ... (ll. 46—
48), state the function of just and give its Russian equivalent.

Put the following phrase from the text into your own words:
he held his ground (1. 62).
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18. These sentences are all taken from the text. Can you put the
adverbs in the right places?

1. He created the discipline that led to the first understand-
ing of the internal constitution of stars. (practically)
2. The dwarf would stop collapsing because of the Fermi-
Dirac degeneracy pressure. (eventually)
3. Protons must supply the bulk of the gravitational com-
pression. (consequently)
4. Chandrasekhar’s result disturbed Eddington. (deeply)
5. Unless some mechanism could be found for limiting the
mass of any star that was going to compress itself into
a dwarf, or unless Chandrasekhar’s result was wrong,
massive stars were fated to collapse into oblivion. (even-
tually, gravitationally)
6. The Danish physicist Niels Bohr assured him that Ed-
dington was wrong and should be ignored. (simply)
7. Eddington started going off the deep end. (really)
8. He was one of the giants of 20th century science. (truly)
19. In line 54, what does that stand for?
20. See if your remember:
before the turn of the century; given their mass and size;
some 61,000 times denser than water; in the late 1940s; for
the wrong reasons; his great work in astronomy; his book on
the stars; everything of significance about the universe; by
examining what went on inside one’s head; to confirm sb’s
prediction; to create a discipline; to lead to sth; at least; to
come up with; to be squeezed together into a small, dense
package; because of the pressure; to recoil from one another;
to take another step forward; to be on board a ship; under the
force of its own gravitation; as a whole; it turns out; equals
about 1.4 times the mass of the sun; to be pleased with sth;
both publicly and privately; to hold one’s ground.
21. Check up for comprehension:

1. The author says, ‘Eddington was a hero of mine but for
the wrong reasons.” Why?
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2. Why do you think white dwarfs were an affront to Ed-
dington?

3. What is Chandrasekhar’s contribution to the study of
white dwarfs?

4. What did Eddington think of Chandrasekhar’s result?

Read Part IV. Use your dictionary to check new words and
expressions, then move on to the exercises.

A SINGULAR SENSATION

As researchers explored quantum statistics and white dwarfs, oth-
ers tackled Einstein’s work on gravitation, his general theory of
relativity. As far as I know, Einstein never spent a great deal of
time looking for exact solutions to his gravitational equations. The
part that described gravity around matter was extremely compli-
cated, because gravity distorts the geometry of space and time,
causing a particle to move from point to point along a curved path.
More important to Einstein, the source of gravity—matter—could
not be described by the gravitational equations alone. It had to
be put in by hand, leaving Einstein to feel the equations were in-
complete. Still, approximate solutions could describe with suffi-
cient accuracy phenomena such as the bending of starlight. Never-
theless, he was impressed when, in 1916, the German astronomer
Karl Schwarzschild came up with an exact solution for a realistic
situation—in particular, the case of a planet orbiting a star.

In the process, Schwarzschild found something disturbing. There
is a distance from the center of the star at which the mathematics
goes berserk. At this distance, now known as the Schwarzschild
radius, time vanishes, and space becomes infinite. The equation
becomes what mathematicians call singular. The Schwarzschild ra-
dius is usually much smaller than the radius of the object. For the
sun, for example, it is three kilometers, whereas for a one-gram
marble it is 10728 centimeter.

Schwarzschild was, of course, aware that his formula went crazy
at this radius, but he decided that it did not matter. He constructed
a simplified model of a star and showed that it would take an infinite
gradient of pressure to compress it to his radius. The finding, he
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argued, served no practical interest.

But his analysis did not appease everybody. It bothered Ein-
stein, because Schwarzschild’s model star did not satisfy certain
technical requirements of relativity theory. Various people, how-
ever, showed that one could rewrite Schwarzschild’s solutions so
that they avoided the singularity. But was the result really nonsin-
gular? It would be incorrect to say that a debate raged, because
most physicists had rather little regard for these matters—at least
until 1939.

In his 1939 paper Einstein credits his renewed concern about
the Schwarzschild radius to discussions with the Princeton cosmol-
ogist Harold P. Robertson and with his assistant Peter G. Bergmann,
who is now professor emeritus at Syracuse University. It was cer-
tainly Einstein’s intention in this paper to kill off the Schwarzschild
singularity once and for all. At the end of it he writes, “The es-
sential result of this investigation is a clear understanding as to
why ‘Schwarzschild singularities’ do not exist in physical reality.”
In other words, black holes cannot exist.

To make his point, Einstein focused on a collection of small par-
ticles moving in circular orbits under the influence of one another’s
gravitation—in effect, a system resembling a spherical star clus-
ter. He then asked whether such a configuration could collapse
under its own gravity into a stable star with a radius equal to its
Schwarzschild radius. He concluded that it could not, because at
a somewhat larger radius the stars in the cluster would have to
move faster than light in order to keep the configuration stable.
Although Einstein’s reasoning is correct, his point is irrelevant: it
does not matter that a collapsing star at the Schwarzschild radius is
unstable, because the star collapses past that radius anyway. I was
much taken by the fact that the then 60-year-old Einstein presents
in this paper tables of numerical results, which he must have gotten
by using a slide rule. But the paper, like the slide rule, is now a
historical artifact.

1. Some words from foreign languages keep their foreign plural
in English.
E.g.
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stimulus —  stimuli
curriculum —  curricula
index — indices

In this part of the text, there are some nouns of the above
type. What is the singular of phenomena (1. 12)?7 What
are the plurals of radius (1. 19), analysis (1. 29) and formula
(1. 24)?

. Consider the sentence More important to Einstein, ... (1. 8-

9). Comment on the use of dashes.

. Identify the functions of still (1. 11), nevertheless (1. 12), in

particular (1. 15), for example (1. 22), of course (1. 24), how-
ever (1. 31), in other words (1. 45).

. We usually put zero article in front of academic subjects:

biology, physics, mathematics. Can you explain the use of
the definite article: the mathematics (1. 17), the geometry
(1. 6)7

. Compare the uses of as: as researchers explored (1. 1), as far

as I know (1. 3), such as (1. 12), as to (1. 43). What are the
functions? Translate the phrases into Russian.

. In lines 1-15, say which sentences contain phrasal verbs and

explain why you think they are phrasal verbs.

. Read lines 37-60 and find the sentences with indirect ques-

tions. What are their peculiarities? Change them to direct
speech.

. Identify the parts of speech and their functions of the follow-

ing —ing forms: looking (l. 4), causing (1. 7), bending (1. 12),
orbiting (1. 15), disturbing (1. 16), finding (1. 27), understand-
ing (1. 43), moving (1. 47), resembling (1. 48), collapsing (1. 55),
using (1. 59).

. What is the author referring to when he says:

a) It had to be put in by hand ... (1. 9-10)

b) There is a distance from the center of the star at which
the mathematics goes berserk. (1l. 16-18)

c¢) Schwarzschild was ... aware that his formula went crazy
at this radius ... (1l. 24-25)
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d) It would be incorrect to say ... because most physicists
had rather little regard for these matters ... (ll. 34-35)
e) ... Einstein credits his renewed concern about ... to
discussion with ... Harold P. Robertson ... (1l. 37-39)
f) ... who is now professor emeritus at Syracuse Univer-
sity (1. 40)
Compare the functions of then (1. 49, 1. 57).
In lines 4660, find the infinitives of purpose and give their
Russian equivalents.
In lines 29-60, find three adjectives with three different neg-
ative prefixes.
Identify the words used by the author as equivalent to: na-
CKOJBKO MHE U3BECTHO, IBUTATHCA OT TOUYKHA K TOYKE TI0 KPU-
BOU JIMHUY, NOCTATOYHO TOYHO ONUCATH, IPUOIU3UTEILHOE/
TOYHOE peIleHne, IOCTPOUTH YIPOIIEHHYI0 MOJEIb, yIOBJIE-
TBOPATH ONpeIeIeHHBIM TPeOOBAHUAM.
See if you remember: to appease sb, relativity theory, once
and for all, in other words, to make one’s point, to focus on,
in effect, to be equal to, a work on gravitation, in particular,
a great deal of time.
Translate into Russian the sentence ‘I was much taken ... °
(1. 56-59), paying special attention to the modal verb must.
Write out all the negative structures. What is the rule?
These sentences are all taken from the text. Can you put the
adverbs in the right places?
a) The Schwarzschild radius is smaller than the radius of
the object. (much, usually)
b) It was Einstein’s intention in this paper to kill off the
Schwarzschild singularity. (certainly, once and for all)
c) He asked whether such a configuration could collapse
under its own gravity into a stable star. (then)
d) But was the result nonsingular? (really)
e) As far as I know, Einstein spent a great deal of time
looking for exact solutions to his gravitational equations.
(never)

49



10

15

Focus on Scientific English

f) The part that described gravity around matter was com-
plicated. (extremely)

18. What do you think?

1) According to the author, ‘Einstein never spent a great
deal of time looking for exact solutions to his gravita-
tional equations.” Why?

2) Why did Einstein want to kill off the Schwarzschild sin-
gularity?

3) Why is this part of the text titled ‘A Singular Sensa-
tion’?

19. Write a summary.

Read Part V without consulting any dictionary. Try to guess
the meaning of the unknown words by thinking about the context
in which they are found. State the main idea.

FROM NEUTRONS TO BLACK HOLES

While Einstein was doing this research, an entirely different enter-
prise was unfolding in California. Oppenheimer and his students
were creating the modern theory of black holes [see “J. Robert Op-
penheimer: Before the War,” by John S.Rigden; Scientific Amer-
ican, July 1995]. The curious thing about the black-hole research
is that it was inspired by an idea that turned out to be entirely
wrong. In 1932 the British experimental physicist James Chadwick
found the neutron, the neutral component of the atomic nucleus.
Soon thereafter speculation began—most notably by Fritz Zwicky
of the California Institute of Technology and independently by the
brilliant Soviet theoretical physicist Lev D. Landau—that neutrons
could lead to an alternative to white dwarfs.

When the gravitational pressure got large enough, they argued,
an electron in a star could react with a proton to produce a neu-
tron. (Zwicky even conjectured that this process would happen in
supernova explosions; he was right, and these “neutron stars” we
now identify as pulsars.) At the time of this work, the actual mech-
anism for generating the energy in ordinary stars was not known.
One solution placed a neutron star at the center of ordinary stars, in
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somewhat the same spirit that many astrophysicists now conjecture
that black holes power quasars.

The question then arose: What was the equivalent of the Chan-
drasekhar mass limit for these stars? Determining this answer is
much harder than finding the limit for the white dwarfs. The reason
is that the neutrons interact with one another with a strong force
whose specifics we still do not fully understand. Gravity will even-
tually overcome this force, but the precise limiting mass is sensitive
to the details. Oppenheimer published two papers on this subject
with his students Robert Serber and George M. Volkoff and con-
cluded that the mass limit here is comparable to the Chandrasekhar
limit for white dwarfs. The first of these papers was published in
1938, and the second in 1939. (The real source of stellar energy—
fusion—was discovered in 1938 by Hans Bethe and Carl Friedrich
von Weizsicker, but it took a few years to be accepted, and so
astrophysicists continued to pursue alternative theories.)

Oppenheimer went on to ask exactly what Eddington had won-
dered about white dwarfs: What would happen if one had a col-
lapsing star whose mass exceeded any of the limits? Einstein’s 1939
rejection of black holes—to which Oppenheimer and his students
were certainly oblivious, for they were working concurrently, 3,000
miles away—was of no relevance. But Oppenheimer did not want
to construct a stable star with a radius equal to its Schwarzschild
radius. He wanted to see what would happen if one let the star col-
lapse through its Schwarzschild radius. He suggested that Snyder
work out this problem in detail.

To simplify matters, Oppenheimer told Snyder to make certain
assumptions and to neglect technical considerations such as the
degeneracy pressure or the possible rotation of the star. Oppen-
heimer’s intuition told him that these factors would not change
anything essential. (These assumptions were challenged many years
later by a new generation of researchers using sophisticated high-
speed computers—poor Snyder had an old-fashioned mechanical
desk calculator—but Oppenheimer was right. Nothing essential
changes.) With the simplified assumptions, Snyder found out that
what happens to a collapsing star depends dramatically on the van-
tage point of the observer.
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1. Look at lines 1-3 and comment on the use of tenses.
2. What are the functions of the infinitives?
a) an idea that turned out to be entirely wrong (Il. 6-7)
b) an electron in a star could react with a proton to produce
a neutron (1. 14)
) it took a few years to be accepted (1. 34)
d) to simplify matters (1. 46)
)
)

o

e) if one let the star collapse (1. 43)

f) Oppenheimer told Snyder to make certain assumptions
and to neglect technical considerations (1. 46-47)

What do you notice in e?
3. These sentences are all taken from the text. Can you put the
adverbs in the right places?

a) ... Snyder found out that what happens to a collaps-
ing star depends on the vantage point of the observer.
(dramatically)

b) Oppenheimer went on to ask what Eddington had won-
dered about white dwarfs. (exactly)

c¢) Gravity will overcome this force ... . (eventually)
d) ... anidea ... turned out to be wrong. (entirely)
e) ... the neutrons interact with one another with a strong

force whose specifics we still do not understand. (fully)
f) Oppenheimer and his students were oblivious to Ein-
stein’s 1939 rejection of black holes. (certainly)

4. Describe the different uses of would here.

a) Zwicky even conjectured that this process would happen
in supernova explosions ... . (1. 15-16)

b) What would happen if one had a collapsing star whose
mass exceeded any of the limits? (1l. 37-38)

c) He wanted to see what would happen if one let the star
collapse through its Schwarzschild radius. (1. 43-44)

5. We use the subjunctive in that-clauses after some verbs (sug-
gest, propose, recommend, insist, demand) and adjectives
(important, vital, necessary, essential). This subjunctive ex-
presses an intention or proposal about the future. E.g. The
Minister insisted that he leave the country immediately.
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10.
11.

| propose that Ms. Bond be elected secretary.
It is essential that the committee resign.
You can also use should or normal present and past tenses:
The Minister insisted that he should leave the country immedi-
ately.
| propose that Ms. Bond is elected secretary.
In lines 36-45, find the sentence of the above type and trans-
late it into Russian.
Explain the meaning of the following:
the curious thing, soon thereafter, the black-hole research, in
somewhat the same spirit, specifics, concurrently, to challenge
assumptions, to use sophisticated high-speed computers, an
old-fashioned mechanical desk calculator, to depend dramati-
cally.
Supply do or make in these sentences, then check against the
text.
a) Oppenheimer told Snyder to ... certain assumptions.
b) While Einstein was . .. this research, an entirely different
enterprise was unfolding in California.

. Say which sentence contains a phrasal verb and explain why

you think it is a phrasal verb:

a) The real source of stellar energy—fusion—was discov-
ered in 1938 by Hans Bethe and Carl Friedrich von Weiz-
sicker, but it took a few years to be accepted, and so
astrophysicists continued to pursue alternative theories.

b) Oppenheimer went on to ask exactly what Eddington
had wondered about white dwarfs.

Look through the text again to find some other examples of
phrasal verbs and explain their meaning.

. What part of speech is power (1. 21), mass (1. 23), determining

(1. 23), finding (1. 24), limiting (1. 27) and what does that
imply in terms of usage?

What is the meaning of for (1. 40)?

See if you know what preposition is needed with each of these
words:

to be sensitive ... sth, to publish papers ... this subject, to
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be comparable ... sth, to be oblivious ... sth, to be ... no
relevance, to depend ... sth, to lead ... sth, an alternative
. sth. Check against the text.
12. Explain why passive verbs rather than active ones are used
here:
a) The real source of stellar energy—fusion—uwas discovered
in 1938 by Hans Bethe and Carl Friedrich von Weiz-
sacker ... (1l. 32-34)
b) These assumptions were challenged many years later by
anew generations of researchers using sophisticated high-
speed computers ... . (Il. 50-54)
13. Here are the answers to some questions. Write the questions.
a) Oppenheimer and his students.
b) Fritz Zwicky and Lev D. Landau.
) When the gravitational pressure got large enough.
) Pulsars.
)
)

[ IR="Ks)

It took a few years to be accepted.
Oppenheimer and his students were certainly oblivious
to it.

g) To simplify matters.

h) Many years later.

i) The vantage point of the observer.

Read Part VI at a quick comfortable pace to answer the ques-

tion: What are two views of a collapse? Then read it again more
carefully to do the exercises.

—

TWO VIEWS OF A COLLAPSE

Let us start with an observer at rest a safe distance from the star.
Let us also suppose that there is another observer attached to the
surface of the star—“co-moving” with its collapse—who can send
light signals back to his stationary colleague. The stationary ob-
server will see the signals from his moving counterpart gradually
shift to the red end of the electromagnetic spectrum. If the fre-
quency of the signals is thought of as a clock, the stationary ob-
server will say that the moving observer’s clock is gradually slowing
down.
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Indeed, at the Schwarzschild radius the clock will slow down to
zero. The stationary observer will argue that it took an infinite
amount of time for the star to collapse to its Schwarzschild radius.
What happens after that we cannot say, because, according to the
stationary observer, there is no “after.” As far as this observer is
concerned, the star is frozen at its Schwarzschild radius.

Indeed, until December 1967, when the physicist John A. Wheeler,
now at Princeton University, coined the name “black hole” in a lec-
ture he presented, these objects were often referred to in the litera-
ture as frozen stars. This frozen state is the real significance of the
singularity in the Schwarzschild geometry. As Oppenheimer and
Snyder observed in their paper, the collapsing star “tends to close
itself off from any communication with a distant observer; only its
gravitational field persists.” In other words, a black hole has been
formed.

But what about observers riding with collapsing stars? These
observers, Oppenheimer and Snyder pointed out, have a completely
different sense of things. To them, the Schwarzschild radius has no
special significance. They pass right through it and on to the center
in a matter of hours, as measured by their watches. They would,
however, be subject to monstrous tidal gravitational forces that
would tear them to pieces.

The year was 1939, and the world itself was about to be torn
to pieces. Oppenheimer was soon to go off to war to build the
most destructive weapon ever devised by humans. He never worked
on the subject of black holes again. As far as I know, Einstein
never did, either. In peacetime, in 1947, Oppenheimer became the
director of the Institute for Advanced Study in Princeton, N.J.,
where Einstein was still a professor. From time to time they talked.
There is no record of their ever having discussed black holes. Further
progress would have to wait until the 1960s, when discoveries of
quasars, pulsars and compact x-ray sources reinvigorated thinking
about the mysterious fate of stars.

1. Do you remember the meanings of the prefixes co and re?
Give Russian equivalents of to co-move (1. 3) and to reinvig-
orate (1. 41). To help you, here is the meaning of the verb to
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invigorate: to make (sb) feel more lively and healthy. Here
are some more examples with different prefixes. What are
their meanings?

Biannual, extract, mistranslate, multi-purpose, overdo, post-
graduate, underused, disprove, irreplaceable, illegal.

2. In lines 10-15, comment on the use of tenses and translate
this part of the text into Russian.

3. What type of subordinate clause is he presented (1. 18)7

4. Compare —ing forms. Identify the parts of speech and their
functions: riding (1. 25) and collapsing (1. 25).

5. What can you say about the sentence: But what about ob-
servers riding with collapsing stars? (1. 25)7

6. What is the singular form of these?

7. Compare the uses of subject (1. 30 and 1. 35). What is the
difference?

8. Like all the verbals, the gerund can form predicative con-
structions, i.e. constructions in which the verbal element
expressed by the gerund is in predicate relations to the nom-
inal element expressed by a noun or pronoun.

E.g. Do you mind my asking you one or two more quesitons?
Bbl HMYero He umeeTe NpoTue TOro, 4TOGLI S 3a4an BaMm eLle
oauH-fBa BOMpoOCa?

Here the gerund asking is in predicate relation to the pronoun
my, which denotes the doer of the action expressed by the
gerund.

A gerundial constuction is nearly always rendered by To, 1T0;
TeM, ITO; Kak, etc.

Identify the sentence in the text with the construction of the
above type and translate it into Russian.

9. Explain the meaning of the verb phrase in bold italics as
accurately as you can: Further progress would have to wait
until the 1960’s ... (ll. 39-42)

10. Say which sentences contain phrasal verbs and explain why
you think they are phrasal verbs.
11. Give English equivalents of the following:

a) B COCTOSHUM ITOKOS Ha 6€30IIACHOM PACCTOSHUAU OT 3BE3 15
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HA DTO MOTPeOyeTCsa MHOTO BPEMEHU
YTO KACAETCa HAOIIO A TeNT

€O31aTh HOBOE CJIOBO

HA3BIBATHCA

OIPYTUMU CJIOBAMU

pasopBaTh Ha KyCKU
HACKOJBKO MHE U3BECTHO
BPEMs OT BPEMEHU
COBEPIIEHHO APYrOe MPEACTABICHAE O BEIIAX
caMoe Pa3pyIATETLHOE OPYKHIe, KOTOPOe OLLIO KOraa-
00 CO3TAHO YEJOBEUYECTBOM
m) gaBalTe HAYHEM C ...
12. Write a summary of this part of the text.

)
)
)
)
)
) MOABEPraTLCA IEMY-TO
)
)
)
)
)

What do you think?

What do you think?

1. What part of the article do you find most interesting?
2. Which facts do you find most remarkable?

Translation

1. B cBoen cratwe, omybaukosanuon B 1939 roay, AibbepT Jun-
IITENH TIONBITAJICA TOKA3ATh, YTO YEPHBIE IBIPHI HEBO3MOXKHHI.

2. [l1a >ToM e OH UCHOIL30BaJ CBOK COOCTBEHHYIO TEOPHUIO
— O0IIYI0 TEOPUI0 OTHOCUTEJBHOCTH.

3. Tlo uponun cyabOBI CEMIAC DTA KE TEOPUA UCIIOAL3YETCS IJIA
IOKa3aTeJbCTBa TOI'0, YTO YEPHBIE NBIPHI HE TOJBKO BO3-
MOXKHBI, HO MHOT']a U Hem30exkHBI. Bmepsoie 510 caeaan Po-
6ept Onmenrenmep.

4. CoBpeMeHHbIE BO33DEHUA HA YE€PHBIE MHIPHI GA3UPYIOTCA HA
COBCEM MHOM (PYHIAMEHTE — KBAHTOBO-CTATUCTUIECKOU Me-
XaHUKeE.
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5.

10.

11.

12.

13.

14.

15.

o8

Bes adppexTos, mpeacKasaHHEIX MMEHHO KBAHTOBOHU CTATH-
CTUKOW, KAXK I ACTPOHOMUIECKUN OOBEKT MOT OBl Iy IauHO
CBAIMTLCA B YEPHYIO ALIPY U MUP ObLI OBI COBCEM HE TAKUM,
KaKOB OH Ha, CAMOM J€Je.

Ha cospganme KBaHTOBOU CTATUCTUKMU OUHIITEHMHA HATOJIK-
HYJIO IICBMO, KOTOPOE OH Ioayym1 B mioHe 1924 roga ot co-
BCEM HEM3BECTHOI'O TOTa MOJOJOT0 MHANMCKOrO (PU3NKa —
Catbenapa Har Bose.

Buuvanue Dunmrensa npusiek moaxon bose: paccmarpu-
BaTh KBAHTOBEIC CBOﬁCTBa q)OTOHOB CTATUCTUYIECCKN.

Okaszanock, 9T0 TaKuM 0OPa30M MOXKHO MOJYUUTh 3HAMEHU-
Tyio ¢popmyay [lramka mis wsaydeHus abCOJIOTHO YEPHOIO
Tesa.

Onun uccrenoBaTen paspabaThIBAIA MTPOOIEMBI KBAHTOBON
CTaTUCTUKH, & APYTUe 3aHAIACH THIATEILHON MPOPabOTKON
cTaTer JDUHIITENHA O MPABUTAIINAN.

YacTb ypaBHEHUU DUHINTENHA, KOTOPas OMUCHIBAET IOJE BO-
KPYT BELIECTBA, OY€HL CIOXKHA.

Onuaxo Takue ABJIEHUA, KAK UCKPUBJICHUE CBETOBOO JyUa,
MOXKHO OOBACHUTL B HEKOTOPOM IPUOIUKEHUH.

Tounoe pemenne 1 JOCTATOIHO PEATUCTUIECKON CUTY AN
— IUTAHETHI, BPALIAOIIENCS BOKPYT 3BE3 IbI,— HAIIEI HeMeIl-
kun actporoMm Kapa [Isaprmmisi.

OUHINTENH CEPLE3HO OOECIOKOWICA OTKPLITHEM HEMEIKOI'O
aCTPOHOMA, MOCKOJIBKY MOJYy9IeHHOE PEIICHAE HE YIOBJICTBO-
PAIO HEKOTOPLIM TEXHUIECKIM TPEOOBAHMAM TEOPHUU OTHO-
CUTEIBHOCTH.

CBOHU BBIBOJ O TOM, YTO UEPHBLIX ABIP HET, JUHIITEUH Cle-
JIaJT Ha, OCHOBE aHAJIN3a, CUCTEMBI HeOOMbIINX YACTHL, TBUKY-
IXCA 10 KPYTOBBEIM OpOHTaM.

Byxsanbuo B Te x)e qgau Po6epT Onmenrenmep co CBOMM CTY-
IEHTOM CO3JaJi COBPEMEHHYIO TEOPUIO YEPHBIX IBIP.
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Video

1. Watch the video ‘A Life of Time’. As you watch it take notes,
they will help you in discussion.

2. Having watched the video, work with a partner and discuss
the following;:

a) Speed slows down time.

b) Time is different to everybody.

c) Space and time change together.

d) The past and the future coexist with the present.
e)

f)

Time, speed, gravity — what is the correlation?
What is dark matter?
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Appendix I:
Texts for Translation

1 Read and translate into Russian two extracts taken from the
article Black Holes and the Centrifugal Force Paradox by
MAREK ARTUR ABRAMOWICZ (Scientific American, 1993).
Extract A is to be translated in written form. Use your dic-
tionary if necessary. Time limit: 45 minutes. Extract B is to
be translated offhand. No dictionary is allowed.

BLACK HOLES AND THE CENTRIFUGAL FORCE
PARADOX

An object orbiting close to a black hole feels a centrifugal force push-
ing inward rather than outward. This paradoxical effect has important
implications for astrophysics
by Marek Artur Abramowicz

A

If you have ever traveled in a car, bus or train as it sped around
a bend, you have experienced the centrifugal force: the outward
push, away from the center of the curve that grows stronger as the
vehicle’s speed increases. You can therefore imagine how surprised
my colleague A.R. Prasanna of the Physical Research Laboratory
in Ahmedabad, India, and I were when we realized recently that
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Einstein’s general theory of relativity predicts that in certain cir-
cumstances the centrifugal force may be directed toward, not away
from, the center of a circular motion. We demonstrated that if an
astronaut manages to steer a spacecraft sufficiently close to some
extremely massive and compact object, such as a black hole, the
astronaut would feel a centrifugal force pushing inward, not out-
ward. Contrary to everyday experience, an increase in the orbital
speed of the rocket strengthens the inward push of the centrifugal
force.

According to our calculations, in the region close to a black
hole not only does the centrifugal force reverse direction but all
dynamic effects that depend on the sense of inward and outward
are also reversed. This realization is important for understanding
some aspects of the physics of black holes, which are believed to
be a crucial part of the mysterious central engines that power the
brightest galaxies in the cosmos. Investigations of the centrifugal
force paradox have provided some tantalizing insights into the be-
havior of these galactic energy sources.

The reason for the centrifugal force paradox is the fantastically
strong gravitational field produced by a black hole. As Albert Ein-
stein predicted in 1915, a gravitational field warps space and bends
light rays. In 1919 Sir Arthur Stanley Eddington confirmed this pre-
diction by measuring the minute deflection of rays passing close to
the sun. The gravitational field of the sun will bend a light ray less
than one thousandth of a degree if the ray grazes the surface. Be-
cause a black hole generates a gravitational field far stronger than
that of the sun, it can deflect light to a correspondingly greater
extent.

Astronomers have not observed black holes directly, but they
have gathered enough indirect evidence to convince most scientists
that black holes must really exist. During the past two decades, as-
tronomers have identified many objects that seem to contain black
holes. These include several bright x-ray sources in our galaxy and
many so-called active galactic nuclei, which are unusually bright
cores of some distant galaxies.

A black hole traps forever any radiation or matter that gets too
close to it. This point of no return defines the size of the black hole,
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or its gravitational radius. A black hole that has the same mass as
the sun should have a gravitational radius of about three kilometers.
If a light ray travels parallel to the surface of the black hole at a
distance equal to, say, three times the gravitational radius, it will
be bent by about 45 degrees. Most remarkably, if a light ray passes
the black hole at a distance of exactly 1.5 times the gravitational
radius, it will orbit the black hole in a perfect circle. The existence
of the circular light ray is a key element in the centrifugal force
paradox.

B

Jean-Pierre Lasota (now at the Paris Observatory) and I discov-
ered the first hint of the paradox quite by chance, almost 20 years
ago. We were working at the Copernicus Astronomical Center in
Warsaw on a rather technical problem in the general theory of rela-
tivity. In particular, we were struggling with a complicated formula
derived by Bozena Muchotrzeb, one of our students. Something
was obviously wrong. The formula yielded a prediction about what
force an object would feel if it orbited around a black hole along
the same path as a circular light ray. The formula implied that
no matter how fast the object moved, it would always feel exactly
the same total force pushing inward. In particular, a motionless
object would feel exactly the same inward force as a projectile that
traveled around the circle at almost the speed of light.

We thought this could be nothing but nonsense. According to
elementary dynamics, the centrifugal force depends on the orbital
speed, whereas the gravitational force does not. Therefore, the total
force—which is just the sum of the centrifugal and gravitational
forces—must also depend on the orbital speed. Because the formula
did not give the answer we expected, we were firmly convinced
that it could not possibly be right. Yet after carefully repeating
all the calculations in its derivation, we could find no mistakes. As
it turned out, the formula was correct, as well as its paradoxical
prediction about how matter behaves when traveling along the path
of a circular light ray.
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2 Read and translate into Russian two extracts taken from the
article The Language of Fractals by HARTMUT JURGENS,
HEINZ-OTTO PEITGEN AND DIETMAR SAUPE (Scientific
American, 1990). Extract A is to be translated in written
form. Use your dictionary if necessary. Time limit: 45 min-
utes. Extract B is to be translated offhand. No dictionary is
allowed.

THE LANGUAGE OF FRACTALS

These unimaginable detailed structures are more than mathematical
curiosities. Fractal geometry succinctly describes complex natural ob-
jects and processes

by Hartmut Jirgens, Heinz-Otto Peitgen and Dietmar Saupe

A

“Nature has played a joke on mathematicians. The 19th-century
mathematicians may have been lacking in imagination, but nature
was not. The same pathological structures that the mathematicians
invented to break loose from 19th-century naturalism turned out to
be inherent in familiar objects all around us.” — FREEMAN DYSON,
“Characterizing Irregularity,” Science, May 12, 1978

The “pathological structures” conjured up by 19th-century math-
ematicians have, in recent years, taken the form of fractals, math-
ematical figures that have fractional dimension rather than the in-
tegral dimensions of familiar geometric figures (such as one-dimen-
sional lines or two-dimensional planes). The current fascination
with fractals is largely a result of the work of Benoit B. Mandelbrot
of the IBM Thomas J. Watson Research Center in Yorktown Heights,
N.Y. Mandelbrot coined the term fractal in 1975; he derived the
word from the Latin fractus, the adjectival form of frangere, or “to
break.” The concept of fractals exploded into the consciousness of
mathematicians, scientists and the lay public in 1983, when Man-
delbrot’s ground-breaking book, The Fractal Geometry of Nature,
was published.
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Fractals are much more than a mathematical curiosity. They
offer an extremely compact method for describing objects and for-
mations. Many structures have an underlying geometric regularity,
known as scale invariance or self-similarity. If one examines these
objects at different size scales, one repeatedly encounters the same
fundamental elements. The repetitive pattern defines the fractional,
or fractal, dimension of the structure. Fractal geometry seems to
describe natural shapes and forms more gracefully and succinctly
than does Euclidean geometry.

Scale invariance has a noteworthy parallel in contemporary chaos
theory, which reveals that many phenomena, even though they fol-
low strict deterministic rules, are in principle unpredictable. Chaotic
events, such as turbulence in the atmosphere or the beating of a
human heart, show similar patterns of variation on different time
scales, much as scale-invariant objects show similar structural pat-
terns on different spatial scales. The correspondence between frac-
tals and chaos is no accident. Rather it is a symptom of a deep-
rooted relation: fractal geometry is the geometry of chaos.

Another parallel between fractal geometry and chaos theory lies
in the fact that recent discoveries in both fields have been made pos-
sible by powerful modern computers. This development challenges
the traditional conception of mathematics. Many mathematicians
have greeted computers with a sense of rejuvenation and liberation,
but others view them as a rejection of pure mathematics.

B

Fractals are first and foremost a language of geometry. Yet
their most basic elements cannot be viewed directly. In this aspect
they differ fundamentally from the familiar elements of Euclidean
geometry, such as the line and circle. Fractals are expressed not in
primary shapes but in algorithms, sets of mathematical procedures.
These algorithms are translated into geometric forms with the aid
of a computer. The supply of algorithmic elements is inexhaustibly
large. Once one has a command of the fractal language, one can
describe the shape of a cloud as precisely and simply as an architect
might describe a house with blueprints that use the language of
traditional geometry.
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Language is an apt metaphor for the ideas that underlie fractal
geometry. Indo-European languages are based on a finite alpha-
bet (the 26 letters from which English words are constructed, for
instance). Letters do not carry meaning unless they are strung to-
gether into words. Euclidean geometry likewise consists of only a
few elements (line, circle and so on) from which complex objects can
be constructed. These objects, in a sense, only then have geometric
meaning.

Asian languages such as Mandarin Chinese are made up of sym-
bols that themselves embody meaning. The number of possible
symbols or elements in these languages is arbitrarily large and can
be considered infinite. Fractal geometry is constructed in much the
same way. It is made up of infinitely many elements, each complete
and unique. The geometric elements are defined by algorithms,
which function as units of “meaning” in the fractal language.

3 Read and translate into Russian two extracts taken from the
article Knot Theory and Statistical Mechanics by VAUGHAN
F.R JoNES (Scientific American, 1990). Extract A is to be
translated in written form. Use your dictionary if necessary.
Time limit: 45 minutes. Extract B is to be translated off-
hand. No dictionary is allowed.

KNOT THEORY AND STATISTICAL MECHANICS

Mathematical theories developed for quantum physics forge a connec-
tion between these two disparate fields
by Vaughan F. R Jones

A

In 1984 I stumbled on a set of techniques that linked two of
the most apparently disparate fields in mathematics and physics:
knot theory and statistical mechanics. Statistical mechanics in-
volves the study of systems with an extremely large number of
component parts. Small systems are largely irrelevant. In knot
theory, meanwhile, even the smallest knots and links may have
subtle properties.
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Nevertheless, certain algebraic relations used to solve models in
statistical mechanics were key to describing a mathematical prop-
erty of knots known as a polynomial invariant. This connection,
tenuous at first, has since developed into a significant flow of ideas.
The appearance of such common ground is not atypical of recent de-
velopments in mathematics and physics—ideas from different fields
interact and produce unexpected results.

Indeed, the discovery of the connection between knots and sta-
tistical mechanics passed through a theory intimately related to the
mathematical structure of quantum physics. This theory, called von
Neumann algebras, is distinguished by the idea of continuous di-
mensionality. Spaces typically have dimensions that are natural
numbers, such as 2, 3 or 11, but in von Neumann algebras dimen-
sions such as V2 or 7 are equally possible. This possibility for
continuous dimension played a key role in joining knot theory and
statistical mechanics.

In another direction, the knot theory invariants were soon found
to occur in quantum field theory. Indeed, Edward Witten of the
Institute for Advanced Study in Princeton, N.J., has shown that
“topological” quantum field theory provides a natural way of ex-
pressing the new ideas about knots. This advance, in turn, has
allowed a beautiful generalization about the invariants of knots in
more complicated three-dimensional spaces known as three-mani-
folds, in which space itself may contain holes and loops.

The new knot theory has already been of use in another, entirely
unrelated domain. Molecular biologists have established that the
double helices of DNA become knotted and linked in the course of
biological process such as recombination and replication. The un-
tying mechanisms used in cells bear an uncanny resemblance to the
simplest mathematical method for generating the new polynomial
invariants.

Knots have been used for both practical and decorative purposes
since time immemorial. Sailors have developed elaborate knots—
sometimes with equally elaborate names—to serve their purposes.
Mathematicians first became interested in knots only in the 19th
century. Lord Kelvin, for example, attempted to deduce the struc-
ture of the periodic table of the elements by assuming that atoms
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were actually knotted vortices in the “ether.” (Although the work
proved unsuccessful, it did inspire Peter G.Tail to create the first
knot tables, listing knots by some order of complexity.)

Since then, knot theory has become a fruitful branch of mathe-
matics. One of the beauties of the discipline is that the main objects
of study are so familiar: just take some string and join it at both
ends. This serves as a perfectly adequate model for the “smooth
non-self-intersecting closed curve” used by the mathematician. A
more general version of a knot, called a link, may consist of more
than one loop. Two knots or links are the same if they can be
made to look exactly alike by pushing and pulling the string but
not cutting it.

B

Thus far there seems to be no hint of how knot theory might
be linked to statistical mechanics. The connection is not at the
surface; it requires some explanation of what statistical mechanics
is and what it is good for. That, in turn, requires starting from
classical mechanics.

In classical mechanics a system of particles can be specified by
giving the position and momentum of each particle at a certain
time. The whole future evolution of the system is then determined
by physical laws. But because a gram of hydrogen gas contains
about 3 x 10%? molecules, it would be unreasonable to try to specify
all the positions and momenta of the gas particles. Moreover, the
change in the system that results from removing a few molecules
would be completely unnoticeable to any observer apprehending
the whole system.

The only quantities that are of interest to statistical mechanics
are those that are insensitive to microscopic changes—for example,
the average energy (temperature) of an ensemble of molecules. If
one imagines a large system build by the addition of one atom at
a time, those quantities will have a definite limit as the size of the
system tends to infinity.

Innocent though it may sound, consideration of aggregate be-
havior creates some puzzles. One of the most obvious is irreversibil-
ity. The laws of motion do not change if the direction of time is
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reversed. For example, an elastic collision between a ball and an
obstacle looks the same whether time runs forward or backward.
And yet consider a system of balls bouncing around without fric-
tion on a rectangular table, constrained by a wall in one half of the
table. If the wall is removed the balls will rapidly spread out over
the entire table and will never conspire to go back into the half
from which they started. The simple fact that a system contains a
large number of particles seems to give time a definite direction.

4 Read and translate into Russian two texts about Godel’s the-
orem. Text A — What is Godel’s Theorem? by MELVIN
HENRIKSEN (taken from Scientific American.com) — is to
be translated in written form. Use your dictionary if neces-
sary. Time limit: 45 minutes. Text B — Diagonalization
and Gddel’s Theorem (a part of the article A Brief History
of Infinity by A. W MOORE (Scientific American, 1995) —
is to be translated offhand. No dictionary is allowed.

A

WHAT IS GODEL’S THEOREM?
by Melvin Henriksen

Giving a mathematically precise statement of Godel’s Incom-
pleteness Theorem would only obscure its important intuitive con-
tent from almost anyone who is not a specialist in mathematical
logic. So instead, I will rephrase and simplify it in the language of
computers.

Imagine that we have access to a very powerful computer called
Oracle. As do the computers with which we are familiar, Oracle
asks that the user “inputs” instructions that follow precise rules
and it supplies the “output” or answer in a way that also follows
these rules. The same input will always produce the same output.
The input and output are written as integers (or whole numbers)
and Oracle performs only the usual operations of addition, subtrac-
tion, multiplication and division (when possible). Unlike ordinary
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computers, there are no concerns regarding efficiency or time. Ora-
cle will carry out properly given instructions no matter how long it
takes and it will stop only when they are executed—even if it takes
more than a million years.

Let’s consider a simple example. Remember that a positive
integer (let’s call it V) that is bigger than 1 is called a prime number
if it is not divisible by any positive integer besides 1 and N. How
would you ask Oracle to decide if N is prime? Tell it to divide N by
every integer between 1 and N — 1 and to stop when the division
comes out evenly or it reaches N — 1. (Actually, you can stop if it
reaches the square root of N. If there have been no even divisions
of N at that point, then N is prime.)

What Godel’s theorem says is that there are properly posed
questions involving only the arithmetic of integers that Oracle can-
not answer. In other words, there are statements that—although
inputted properly—Oracle cannot evaluate to decide if they are
true or false. Such assertions are called undecidable, and are very
complicated. And if you were to bring one to Dr. Godel, he would
explain to you that such assertions will always exist.

Even if you were given an “improved” model of Oracle, call
it OracleT, in which a particular undecidable statement, UD, is
decreed true, another undecidable statement would be generated to
take its place. More puzzling yet, you might also be given another
”improved” model of Oracle, call it OracleF, in which UD would
be decreed false. Regardless, this model too would generate other
undecidable statements, and might yield results that differed from
OracleT’s, but were equally valid.

Do you find this shocking and close to paradoxical? It was even
more shocking to the mathematical world in 1931, when Godel
unveiled his incompleteness theorem. Godel did not phrase his
result in the language of computers. He worked in a definite logical
system and mathematicians hoped that his result depended on the
peculiarities of that system. But in the next decade or so, a number
of mathematicians—including Stephen C. Kleene, Emil Post, J.B.
Rosser and Alan Turing—showed that it did not.

Research on the consequences of this great theorem continues
to this day. Anyone with Internet access using a search engine like
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Alta Vista can find several hundred articles of highly varying quality
on Godel’s Theorem. Among the best things to read, though, is
Godel’s Proof by Ernest Nagel and James R. Newman, published in
1958 and released in paperback by New York University Press in
1983.

B

DIAGONALIZATION AND GODEL’S THEOREM
by A. W Moore

The diagonalization used in establishing Cantor’s theorem also
lies at the heart of Austrian mathematician Kurt Gédel’s celebrated
1931 theorem. Seeing how offers a particularly perspicuous view of
Godel’s result.

Godel’s theorem deals with formal systems of arithmetic. By
arithmetic I mean the theory of positive integers and the basic
operations that apply to them, such as addition and multiplication.
The theorem states that no single system of laws (axioms and rules)
can be strong enough to prove all true statements of arithmetic
without at the same time being so strong that it “proves” false ones,
too. Equivalently, there is no single algorithm for distinguishing
true arithmetical statements from false ones. Two definitions and
two lemmas, or propositions, are needed to prove Godel’s theorem.
Proof of the lemmas is not possible within these confines, although
each is fairly plausible.

Definition 1: A set of positive integers is arithmetically defin-
able if it can be defined using standard arithmetical terminology.
Examples are the set of squares, the set of primes and the set of
positive integers less than, say, 821.

Definition 2: A set of positive integers is decidable if there is
an algorithm for determining whether any given positive integer
belongs to the set. The same three sets above serve as examples.

Lemma 1: There is an algorithmic way of pairing off positive
integers with arithmetically definable sets.

Lemma 2: Every decidable set is arithmetically definable.
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Given lemma 1, diagonalization yields a set of positive integers
that is not arithmetically definable. Call this set D. Now suppose,
contrary to Godel’s theorem, there is an algorithm for distinguish-
ing between true arithmetical statements and false ones. Then D,
by virtue of its construction, is decidable. But given lemma 2, this
proposition contradicts the fact that D is not arithmetically defin-
able. So Gddel’s theorem must hold after all. Q.E.D.

72



10

15

Appendix II:
Transcript

FERMAT’'S LAST THEOREM 3

PROF. ANDREW WILES:

Perhaps I could best describe my experience of doing mathematics
in terms of entering a dark mansion. One goes into the first room
and it’s dark, completely dark, one stumbles around bumping into
the furniture and then gradually you learn where each piece of
furniture is, and finally after six months or so you find the light
switch, you turn it on suddenly it’s all illuminated, you can see
exactly where you were.

At the beginning of September I was sitting here at this desk
when suddenly, totally unexpectedly, I had this incredible revela-
tion. It was the most, the most important moment of my working
life. Nothing I ever do again will ... I’'m sorry.

NARRATOR:
This is the story of one man’s obsession with the world’s greatest
mathematical problem. For seven years Professor Andrew Wiles

3The BBC Horizon Programme, “Fermat’s Last Theorem” — written
and edited by John Lynch, directed by Simon Singh — was broadcast in
January, 1996. The BBC Web site for this programme can be found at
http://www.bbc.co.uk/horizon/95-96/960115.html.
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worked in complete secrecy, creating the calculation of the century.
It was a calculation which brought him fame, and regret.

ANDREW WILES:

So I came to this. I was a 10-year-old and one day I happened to
be looking in my local public library and I found a book on math
and it, it told a bit about the history of this problem that someone
had resolved this problem 300 years ago, but no-one had ever seen
the proof, no-one knew if there was a proof, and people ever since
have looked for the proof and here was a problem that I, a 10-year-
old, could understand, but none of the great mathematicians in the
past had been able to resolve, and from that moment of course I
just, just tried to solve it myself. It was such a challenge, such a
beautiful problem.

This problem was Fermat’s last theorem.

NARRATOR:
Pierre de Fermat was a 17th-century French mathematician who
made some of the greatest breakthroughs in the history of numbers.
His inspiration came from studying the Arithmetica, that Ancient
Greek text.

PROF. JOHN CONWAY:

Fermat owned a copy of this book, which is a book about numbers
with lots of problems, which presumably Fermat tried to solve. He
studied it, he, he wrote notes in the margins.

NARRATOR:

Fermat’s original notes were lost, but they can still be read in a
book published by his son. It was one of these notes that was
Fermat’s greatest legacy.

JOHN CONWAY:
And this is the fantastic observation of Master Pierre de Fermat
which caused all the trouble. “Cubum autem in duos cubos”

NARRATOR:

This tiny note is the world’s hardest mathematical problem. It’s
been unsolved for centuries, yet it begins with an equation so simple
that children know it off by heart.
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CHILDREN:
The square of the hypotenuse is equal to the sum of the squares of
the other two sides.

JOHN CONWAY:

Yes well, that’s Pythagoras’s theorem, isn’t it, that’s what we all
did at school. So Pythagoras’s theorem, the clever thing about it
is that it tells us when three numbers are the sides of a right-angle
triangle. That happens just when x squared plus y squared equals
z squared.

ANDREW WILES:

X squared plus y squared equals zee squared, and you can ask:
well what are the whole numbers solutions of this equation? And
you quickly find there’s a solution 3 squared plus 4 squared equals
5 squared. Another one is 5 squared plus 12 squared is 13 squared,
and you go on looking and you find more and more. So then a nat-
ural question is, the question Fermat raised: supposing you change
from squares, supposing you replace the two by three, by four, by
five, by six, by any whole number ’n’, and Fermat said simply that
you’ll never find any solutions, however, however far you look you’ll
never find a solution.

NARRATOR:

You will never find numbers that fit this equation, if n is greater
than 2. That’s what Fermat said, and what’s more, he said he
could prove it. In a moment of brilliance, he scribbled the following
mysterious note.

JOHN CONWAY:
Written in Latin, he says he has a truly wonderful proof “Demon-
strationem mirabilem” of this fact, and then the last words are:
“Hanc marginis exigiutas non caperet” — this margin is too small
to contain this.

NARRATOR:
So Fermat said he had a proof, but he never said what it was.

JOHN CONWAY:
Fermat made lots of marginal notes. People took them as challenges
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and over the centuries every single one of them has been disposed
of, and the last one to be disposed of is this one. That’s why it’s
called the last theorem.

NARRATOR:
Rediscovering Fermat’s proof became the ultimate challenge, a chal-
lenge which would baffle mathematicians for the next 300 years.

JOHN CONWAY:
Gauss, the greatest mathematician in the world ...

BARRY MAZUR:
Oh yes, Galois ...

JOHN COATES:
Kummer of course ...

KEN RIBET:
Well, in the 18th-century Euler didn’t prove it.

JOHN CONWAY:
Well, you know there’s only been the one woman really ...

KEN RIBET:
Sophie Germain

BARRY MAZUR:
Oh, there are millions, there are lots of people

PETER SARNAK:
But nobody had any idea where to start.

ANDREW WILES:

Well, mathematicians just love a challenge and this problem, this
particular problem just looked so simple, it just looked as if it had
to have a solution, and of course it’s very special because Fermat
said he had a solution.

NARRATOR:

Mathematicians had to prove that no numbers fitted this equation
but with the advent of computers, couldn’t they check each number
one by one and show that none of them fitted?
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JOHN CONWAY:

Well, how many numbers are there to beat that with? You’ve got
to do it for infinitely many numbers. So after you’ve done it for
one, how much closer have you got? Well, there’s still infinitely
many left. After you’ve done it for 1,000 numbers, how many, how
much closer have you got? Well, there’s still infinitely many left.
After you’ve done a few million, there’s still infinitely many left. In
fact, you haven’t done very many, have you?

NARRATOR:
A computer can never check every number. Instead, what’s needed
is a mathematical proof.

PETER SARNAK:
A mathematician is not happy until the proof is complete and con-
sidered complete by the standards of mathematics.

NICK KATZ:
In mathematics there’s the concept of proving something, of know-
ing it with absolute certainty.

PETER SARNAK:
Which, well, it’s called rigorous proof.

KEN RIBET:
Well, rigorous proof is a series of arguments . ..

PETER SARNAK:
... based on logical deductions.

KEN RIBET:
. which just builds one upon another.

PETER SARNAK:
Step by step.

KEN RIBET:
Until you get to ...

PETER SARNAK:
A complete proof.
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NICK KATZ:
That’s what mathematics is about.

NARRATOR:

A proof is a sort of reason. It explains why no numbers fit the
equation without having to check every number. After centuries of
failing to find a proof, mathematicians began to abandon Fermat
in favour of more serious maths.

In the 70s Fermat was no longer in fashion. At the same time
Andrew Wiles was just beginning his career as a mathematician.
He went to Cambridge as a research student under the supervision
of Professor John Coates.

JOHN COATES:

I’ve been very fortunate to have Andrew as a student, and even
as a research student he, he was a wonderful person to work with.
He had very deep ideas then and it, it was always clear he was a
mathematician who would do great things.

NARRATOR:

But not with Fermat. Everyone thought Fermat’s last theorem was
impossible, so Professor Coates encouraged Andrew to forget his
childhood dream and work on more mainstream maths.

ANDREW WILES:

The problem with working on Fermat is that you could spend years
getting nothing so when I went to Cambridge my advisor, John
Coates, was working on Iwasawa theory and elliptic curves and I
started working with him.

NARRATOR:
Elliptic curves were the in-thing to study, but perversely, elliptic
curves are neither ellipses nor curves.

BARRY MAZUR:
You may never have heard of elliptic curves, but they’re extremely
important.

JOHN CONWAY:
OK, so what’s an elliptic curve?
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BARRY MAZUR:
Elliptic curves — they’re not ellipses, they’re cubic curves whose
solution has a shape that looks like a doughnut.

PETER SARNAK:
It looks so simple yet the complexity, especially arithmetic com-
plexity, is immense.

NARRATOR:

Every point on the doughnut is the solution to an equation. Andrew
Wiles now studied these elliptic equations and set aside his dream.
What he didn’t realise was that on the other side of the world el-
liptic curves and Fermat’s last theorem were becoming inextricably
linked.

GORO SHIMURA:

I entered the University of Tokyo in 1949 and that was four years
after the War, but almost all professors were tired and the lectures
were not inspiring.

NARRATOR:

Goro Shimura and his fellow students had to rely on each other for
inspiration. In particular, he formed a remarkable partnership with
a young man by the name of Utaka Taniyama.

GORO SHIMURA:

That was when I became very close to Taniyama. Taniyama was
not a very careful person as a mathematician. He made a lot of
mistakes, but he, he made mistakes in a good direction and so
eventually he got right answers and I tried to imitate him, but I
found out that it is very difficult to make good mistakes.

NARRATOR:
Together, Taniyama and Shimura worked on the complex mathe-
matics of modular functions.

NICK KATZ:
I really can’t explain what a modular function is in one sentence. |
can try and give you a few sentences to explain it.

PETER SARNAK:
LAUGHS
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NICK KATZ:
I really can’t put it in one sentence.

PETER SARNAK:
Oh, it’s impossible.

ANDREW WILES:

There’s a saying attributed to Eichler that there are five fundamen-
tal operations of arithmetic: addition, subtraction, multiplication,
division and modular forms.

BARRY MAZUR:

Modular forms are functions on the complex plane that are inordi-
nately symmetric. They satisfy so many internal symmetries that
their mere existence seems like accidents, but they do exist.

NARRATOR:

This image is merely a shadow of a modular form. To see one
properly your TV screen would have to be stretched into something
called hyperbolic space. Bizarre modular forms seem to have noth-
ing whatsoever to do with the humdrum world of elliptic curves.
But what Taniyama and Shimura suggested shocked everyone.

GORO SHIMURA:
In 1955 there was an international symposium and Taniyama posed
two or three problems.

NARRATOR:

The problems posed by Taniyama led to the extraordinary claim
that every elliptic curve was really a modular form in disguise. It
became known as the Taniyama-Shimura conjecture.

JOHN CONWAY:
The Taniyama-Shimura conjecture says, it says that every rational
elliptic curve is modular and that’s so hard to explain.

BARRY MAZUR:

So let me explain. Over here you have the elliptic world, the el-
liptic curve, these doughnuts, and over here you have the modular
world, modular forms with their many, many symmetries. The
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Shimura-Taniyama conjecture makes a bridge between these two
worlds. These worlds live on different planets.

It’s a bridge, it’s more than a bridge, it’s really a dictionary,
a dictionary where questions, intuitions, insights, theorems in the
one world get translated to questions, intuitions in the other world.

KEN RIBET:

I think that when Shimura and Taniyama first started talking about
the relationship between elliptic curves and modular forms people
were very incredulous. I wasn’t studying mathematics yet. By the
time | was a graduate student in 1969 or 1970 people were coming
to believe the conjecture.

NARRATOR:

In fact, Taniyama-Shimura became a foundation for other theories
which all came to depend on it. But Taniyama-Shimura was only a
conjecture, an unproven idea, and until it could be proved, all the
maths which relied on it was under threat.

ANDREW WILES:

Built more and more conjectures stretched further and further into
the future but they would all be completely ridiculous if Taniyama-
Shimura was not true.

NARRATOR:

Proving the conjecture became crucial, but tragically, the man
whose idea inspired it didn’t live to see the enormous impact of
his work. In 1958, Taniyama committed suicide.

GORO SHIMURA:

I was very much puzzled. Puzzlement may be the best word. Of
course I was sad that, see, it was so sudden and I was unable to
make sense out of this.

NARRATOR:
Taniyama-Shimura went on to become one of the great unproven
conjectures. But what did it have to do with Fermat’s last theorem?

ANDREW WILES:
At that time no one had any idea that Taniyama-Shimura could
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have anything to do with Fermat. Of course in the 80s that all
changed completely.

NARRATOR:
Taniyama-Shimura says: every elliptic curve is modular and Fermat
says: no numbers fit this equation. What was the connection?

KEN RIBET:

Well, on the face of it the Shimura-Taniyama conjecture, which is
about elliptic curves, and Fermat’s last theorem have nothing to do
with each other because there’s no connection between Fermat and
elliptic curves. But in 1985 Gerhard Frey had this amazing idea.

NARRATOR:

Frey, a German mathematician, considered the unthinkable: what
would happen if Fermat was wrong and there was a solution to this
equation after all?

PETER SARNAK:

Frey showed how starting with a fictitious solution to Fermat’s last
equation if such a horrible, beast existed, he could make an elliptic
curve with some very weird properties.

KEN RIBET:
That elliptic curve seems to be not modular, but Shimura-Taniyama,
says that every elliptic curve is modular.

NARRATOR:
So if there is a solution to this equation it creates such a weird
elliptic curve it defies Taniyama-Shimura.

KEN RIBET:

So in other words, if Fermat is false, so is Shimura-Taniyama, or
said differently, if Shimura-Taniyama is correct, so is Fermat’s last
theorem.

NARRATOR:
Fermat and Taniyama-Shimura were now linked, apart from just
one thing.

KEN RIBET:
The problem is that Frey didn’t really prove that his elliptic curve
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was not modular. He gave a plausibility argument which he hoped
could be filled in by experts, and then the experts started working
on it.

NARRATOR:

In theory, you could prove Fermat by proving Taniyama, but only if
Frey was right. Frey’s idea became known as the epsilon conjecture
and everyone tried to check it. One year later, in San Francisco,
there was a breakthrough.

KEN RIBET:

I saw Barry Mazur on the campus and I said let’s go for a cup of
coffee and we sat down for cappuccinos at this café and I looked at
Barry and I said you know, I’'m trying to generalise what I’ve done
so that we can prove the full strength of Serre’s epsillon conjecture
and Barry looked at me and said well you’ve done it already, all
you have to do is add on some extra gamma zero of m structure
and run through your argument and it still works, and that gives
everything you need, and this had never occurred to me as simple
as it sounds. I looked at Barry, I looked to my cappuccino, I looked
back at Barry and said my God, you’re absolutely right.

BARRY MAZUR:
Ken’s idea was brilliant.

ANDREW WILES:

I was at a friend’s house sipping iced tea early in the evening and
he just mentioned casually in the middle of a conversation: by the
way, do you hear that Ken has proved the epsilon conjecture? And
I was just electrified. I, I knew that moment the course of my
life was changing because this meant that to prove Fermat’s last
theorem I just had to prove Taniyama-Shimura conjecture. From
that moment that was what I was working on. I just knew I would
go home and work on the Taniyama-Shimura conjecture.

NARRATOR:

Andrew abandoned all his other research. He cut himself off from
the rest of the world and for the next seven years he concentrated
solely on his childhood passion.
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ANDREW WILES:

I never use a computer. I sometimes might scribble, I do doodles
I start trying to, to find patterns really, so I’'m doing calculations
which try to explain some little piece of mathematics and I’'m try-
ing to fit it in with some previous broad conceptual understanding
of some branch of mathematics. Sometimes that’ll involve going
and looking up in a book to see how it’s done there, sometimes it’s
a question of modifying things a bit, sometimes doing a little ex-
tra calculation, and sometimes you realise that nothing that’s ever
been done before is any use at all, and you, you just have to find
something completely new and it’s a mystery where it comes from.

JOHN COATES:

I must confess I did not think that the Shimura-Taniyama conjecture
was accessible to proof at present. I thought I probably wouldn’t
see a proof in my lifetime.

KEN RIBET:

I was one of the vast majority of people who believe that the
Shimura-Taniyama conjecture was just completely inaccessible, and
I didn’t bother to prove it, even think about trying to prove it. An-
drew Wiles is probably one of the few people on earth who had the
audacity to dream that you can actually go and prove this conjec-
ture.

ANDREW WILES:

In this case certainly for the first several years I had no fear of
competition. I simply didn’t think I or any one else had any real
idea how to do it. But I realised after a while that talking to
people casually about Fermat was, was impossible because it just
generates too much interest and you can’t really focus yourself for
years unless you have this kind of undivided concentration which
too many spectators will have destroyed.

NARRATOR:
Andrew decided that he would work in secrecy and isolation.

PETER SARNAK:
I often wondered myself what he was working on.
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NICK KATZ:
Didn’t have an inkling.

JOHN CONWAY:
No, I suspected nothing.

KEN RIBET:

This is probably the only case I know where someone worked for
such a long time without divulging what he was doing, without
talking about the progress he had made. It’s just unprecedented.

NARRATOR:

Andrew was embarking on one of the most complex calculations in
history. For the first two years, he did nothing but immerse himself
in the problem, trying to find a strategy which might work.

ANDREW WILES:

So it was now known that Taniyama-Shimura implied Fermat’s last
theorem. What does Taniyama-Shimura say? It, it says that all
elliptic curves should be modular. Well, this was an old problem
been around for 20 years and lots of people would try to solve it.

KEN RIBET:

Now one way of looking at it is that you have all elliptic curves and
then you have the modular elliptic curves and you want to prove
that there are the same number of each. Now of course you’re
talking about infinite sets, so you can’t, just can’t count them per
se, but you can divide them into packets and you could try to count
each packet and see how things go, and this proves to be a very
attractive idea for about 30 seconds, but you can’t really get much
further than that, and the big question on the subject was how you
could possibly count, and in effect, Wiles introduced the correct
technique.

NARRATOR:

Andrew’s trick was to transform the elliptic curves into something
called Galois representations which would make counting easier.
Now it was a question of comparing modular forms with Galois
representations, not elliptic curves.
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ANDREW WILES:

Now you might ask and it’s an obvious question, why can’t you
do this with elliptic curves and modular forms, why couldn’t you
count elliptic curves, count modular forms, show they’re the same
number? Well, the answer is people tried and they never found a
way of counting, and this was why this is the key breakthrough,
that I found a way to count not the original problem, but the
modified problem. I found a way to count modular forms and Galois
representations.

NARRATOR:
This was only the first step, and already it had taken three years
of Andrew’s life.

ANDREW WILES:

My wife’s only known me while I’ve been working on Fermat. I told
her a few days after we got married. I decided that I really only had
time for my problem and my family and when I was concentrating
very hard and I found that with young children that’s the best
possible way to relax. When you’re talking to young children they
simply aren’t interested in Fermat, at least at this age, they want to
hear a children’s story and they’re not going to let you do anything
else.

So I’d found this wonderful counting mechanism and I started
thinking about this concrete problem in terms of Iwasawa theory.
Iwasawa theory was the subject I'd studied as a graduate student
and in fact with my advisor, John Coates, I'd used it to analyse
elliptic curves.

NARRATOR:
Andrew hopes that Iwasawa theory would complete his counting
strategy.

ANDREW WILES:

Now I tried to use Iwasawa theory in this context, but I ran into
trouble. I seemed to be up against a wall. I just didn’t seem to
be able to get past it. Well sometimes when I can’t see what to do
next I often come here by the lake. Walking has a very good effect
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in that you’re in this state of concentration, but at the same time
you’re relaxing, you’re allowing the subconscious to work on you.

NARRATOR:

Iwasawa theory was supposed to help create something called a class
number formula, but several months passed and the class number
formula remained out of reach.

ANDREW WILES:

So at the end of the summer of 91 I was at a conference. John
Coates told me about a wonderful new paper of Matthias Flach,
a student of his, in which he had tackled a class number formula,
in fact exactly the class number formula I needed, so Flach using
ideas of Kolyvagin had made a very significant first step in actually
producing the class number formula. So at that point I thought
this is just what I need, this is tailor-made for the problem. I put
aside completely the old approach I'd been trying and I devoted
myself day and night to extending his result.

NARRATOR:

Andrew was almost there, but this breakthrough was risky and
complicated. After six years of secrecy, he needed to confide in
someone.

NICK KATZ:

In January of 1993 Andrew came up to me one day at tea, asked
me if I could come up to his office, there was something he wanted
to talk to me about. I had no idea what, what this could be. Went
up to his office. He closed the door, he said he thought he would
be able to prove Taniyama-Shimura. | was just amazed, this was
fantastic.

ANDREW WILES:
It involved a kind of mathematics that Nick Katz is an expert in.

NICK KATZ:
I think another reason he asked me was that he was sure I would
not tell other people, I would keep my mouth shut, which I did.

JOHN CONWAY:
Andrew Wiles and Nick Katz had been spending rather a lot of

87



480

485

490

495

500

5056

510

Focus on Scientific English

time huddled over a coffee table at the far end of the common
room working on some problem or other. We never knew what it
was.

NARRATOR:

In order not to arouse any more suspicion, Andrew decided to check
his proof by disguising it in a course of lectures which Nick Katz
could then attend.

ANDREW WILES:

Well, 1 explained at the beginning of the course that Flach had
written this beautiful paper and I wanted to try to extend it to
prove the full class number formula. The only thing I didn’t explain
was that proving the class number formula was most of the way to
Fermat’s last theorem.

NICK KATZ:

So this course was announced. It said calculations on elliptic curves,
which could mean anything. Didn’t mention Fermat, didn’t men-
tion Taniyama-Shimura, there was no way in the world anyone could
have guessed that it was about that, if you didn’t already know.
None of the graduate students knew and in a few weeks they just
drifted off because it’s impossible to follow stuff if you don’t know
what it’s for, pretty much. It’s pretty hard even if you do know
what’s it for, but after a few weeks I was the only guy in the audi-
ence.

NARRATOR:
The lectures revealed no errors and still none of his colleagues sus-
pected why Andrew was being so secretive.

PETER SARNAK:
Maybe he’s run out of ideas. That’s why he’s quiet, you never know
why they’re quiet.

NARRATOR:
The proof was still missing a vital ingredient, but Andrew now felt
confident. It was time to tell one more person.

ANDREW WILES:
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So I called up Peter and asked him if I could come round and talk
to him about something.

PETER SARNAK:

I got a phone call from Andrew saying that he had something very
important he wanted to chat to me about, and sure enough he had
some very exciting news.

ANDREW WILES:
Said I, I think you better sit down for this. He sat down. I said I
think I’'m about to prove Fermat’s last theorem.

PETER SARNAK:
I was flabbergasted, excited, disturbed. I mean I remember that
night finding it quite difficult to sleep.

ANDREW WILES:
But there was still a problem. Late in the spring of 93 I was in this
very awkward position and I thought I’d got most of the curves
to be modular, so that was nearly enough to be content to have
Fermat’s last theorem, but there was this, these few families of
elliptic curves that had escaped the net and I was sitting here at
my desk in May of '93 still wondering about this problem and I was
casually glancing at a paper of Barry Mazur’s and there was just one
sentence which made a reference to actually what’s a 19th-century
construction and I just instantly realised that there was a trick that
I could use, that I could switch from the families of elliptic curves
I’d been using, I'd been studying them using the prime three, I
could switch and study them using the prime five. It looked more
complicated, but I could switch from these awkward curves that
I couldn’t prove were modular to a different set of curves which
I'd already proved were modular and use that information to just
go that one last step and I just kept working out the details and
time went by and I forgot to go down to lunch and it got to about
teatime and I went down and Nada was very surprised that I'd
arrived so late and then, then she, I told her that I, I believed I’d
solved Fermat’s last theorem.

I was convinced that I had Fermat in my hands and there was
a conference in Cambridge organised by my advisor, John Coates.
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I thought that would be a wonderful place. It’s my old home town,
I'd been a graduate student there, ... be a wonderful place to talk
about it if I could get it in good shape.

JOHN COATES:

The name of the lectures that he announced was simply ‘Elliptic
curves and modular forms. There was no mention of Fermat’s last
theorem.

KEN RIBET:
Well, I was at this conference on L functions and elliptic curves
and it was kind of a standard conference and all of the people were
there, it didn’t seem to be anything out of the ordinary, until people
started telling me that they’d been hearing weird rumours about
Andrew Wiles’s proposed series of lectures.

I started talking to people and I got more and more precise
information. I’ve no idea how it was spread.

PETER SARNAK:
Not from me, not from me.

JOHN CONWAY:

Whenever any piece of mathematical news had been in the air,
Peter would say, oh, that’s nothing, wait until you hear the big
news, there’s something big going to break.

PETER SARNAK:
Maybe some hints, yeah.

ANDREW WILES:
People would ask me leading up to my lectures what exactly I was
going to say and I said well, come to my lecture and see.

KEN RIBET:

It’s a very charged atmosphere a lot of the major figures of arith-
metical, algebraic geometry were there. Richard Taylor and John
Coates, Barry Mazur.

BARRY MAZUR:
Well, I'd never seen a lecture series in mathematics like that before.
What was unique about those lectures were the glorious ideas how
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many new ideas were presented, and the constancy of his dramatic
build-up that was suspenseful until the end.

KEN RIBET:

There was this marvellous moment when we were coming close to a
proof of Fermat’s last theorem, the tension had built up and there
was only one possible punch line.

ANDREW WILES:

So after I'd explained the 3/5 switch on the blackboard, I then just
wrote up a statement of Fermat’s last theorem, said I’d proved it,
said I think I’ll stop there.

JOHN COATES:
The next day what was totally unexpected was that we were deluged
by enquiries from newspapers, journalists from all around the world.

ANDREW WILES:

It was a wonderful feeling after seven years to have really solved
my problem, I've finally done it. Only later did it come out that
there was a, a problem at the end.

NICK KATZ:

Now it was time for it to be refereed which is to say for people
appointed by the journal to go through and make sure that the
thing was really correct.

So for, for two months, July and August, I literally did nothing
but go through this manuscript, line by line and what, what this
meant concretely was that essentially every day, sometimes twice
a day, I would E-mail Andrew with a question: I don’t understand
what you say on this page on this line. It seems to be wrong or I
just don’t understand.

ANDREW WILES:
So Nick was sending me E-mails and at the end of the summer he
sent one that seemed innocent at first. I tried to resolve it.

NICK KATZ:
It’s a little bit complicated so he sends me a fax, but the fax doesn’t
seem to answer the question, so I E-mail him back and I get another
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fax which I’'m still not satisfied with, and this in fact turned into
the error that turned out to be a fundamental error and that we
had completely missed when he was lecturing in the spring.

ANDREW WILES:

That’s where the problem was in the method of Flach and Kolyvagin
that I’d extended, so once I realised that at the end of September,
that there was really a, a problem with the way I’d made the con-
struction I spent the fall trying to think what kind of modifications
could be made to the construction. There are lots of simple and
rather natural modifications that any one of which might work.

PETER SARNAK:

And every time he would try and fix it in one corner it would ...
sort of some other difficulty would add up in another corner. It
was like he was trying to put a carpet in a room where the carpet
had more size than the room, but he could put it in, in any corner
and then when he ran to the other corner it would pop up in this
corner and whether you could not put the carpet in the room was
not something that he was able to decide.

NICK KATZ:

I think he externally appeared normal but at this point he was
keeping a secret from the world and I think he must have been in
fact pretty uncomfortable about it.

JOHN CONWAY:

Well, you know we were behaving a little bit like Kremlinologists.
Nobody actually liked to come out and ask him how he’s getting
on with, with the proof, so somebody would say I saw Andrew this
morning. Did he smile? Well yes, but he didn’t look too happy.

ANDREW WILES:
The first seven years I'd worked on this problem. I loved every
minute of it. However hard it had been there’d been, there’d been
setbacks often, there’d been things that had seemed insurmountable
but it was a kind of private and very personal battle I was engaged
in.

And then after there was a problem with it doing mathematics
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in that kind of rather over-exposed way is certainly not my style
and I have no wish to repeat it.

NARRATOR:

Other mathematicians, including his former student Richard Taylor,
tried to help fix the mistake. But after a year of failure, Andrew
was ready to abandon his flawed proof.

ANDREW WILES:

In September, I decided to go back and look one more time at the
original structure of Flach and Kolyvagin to try and pinpoint ex-
actly why it wasn’t working, try and formulate it precisely. One
can never really do that in mathematics but I just wanted to set
my mind at rest that it really couldn’t be made to work. And I
was sitting here at this desk. It was a Monday morning, September
19th and I was trying convincing myself that it didn’t work, just
seeing exactly what the problem was when suddenly, totally un-
expectedly, I had this incredible revelation. I, I realised what was
holding me up was exactly what would resolve the problem I'd had
in my Iwasawa theory attempt three years earlier, it was the most,
the most important moment of my working life. It was so indescrib-
ably beautiful, it was so simple and so elegant and I just stared in
disbelief for twenty minutes. Then during the day I walked round
the department, I’d keep coming back to my desk and looking to
see it was still there, it was still there. Almost what seemed to
be stopping the method of Flach and Kolyvagin was exactly what
would make horizontally Iwasawa theory. My original approach to
the problem from three years before would make exactly that work,
so out of the ashes seemed to rise the true answer to the problem.
So the first night I went back and slept on it, I checked through
it again the next morning and by 11 o’clock I satisfied and I went
down, told my wife I’ve got it, I think I’ve got it, I’ve found it, and
it was so unexpected, she, I think she thought I was talking about
a children’s toy or something, and said, ‘Got what?’ I said, ‘I’ve
fixed my proof, I've got it.’

JOHN COATES:
I think it will always stand as, as one of the high achievements of
number theory.
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BARRY MAZUR:
It was magnificent.

JOHN CONWAY:
It’s not every day that you hear the proof of the century.

GORO SHIMURA:
Well, my first reaction was: I told you so.

NARRATOR:

The Taniyama-Shimura conjecture is no longer a conjecture, and as
a result Fermat’s last theorem has been proved. But is Andrew’s
proof the same as Fermat’s?

ANDREW WILES:

Fermat couldn’t possibly have had this proof. It’s a 20th-century
proof. There’s no way this could have been done before the 20th-
century.

JOHN CONWAY:

I’'m relieved that this result is now settled. But I’m sad in some
ways because Fermat’s last theorem has been responsible for so
much. What will we find to take its place?

ANDREW WILES:

There’s no other problem that will mean the same to me. I had this
very rare privilege of being able to pursue in my adult life what had
been my childhood dream. I know it’s a rare privilege but if, if one
can do this it’s more rewarding than anything I could imagine.

BARRY MAZUR:

One of the great things about this work is it embraces the ideas
of so many mathematicians. I’'ve made a partial list: Klein, Fricke,
Hurwitz, Hecke, Dirichlet, Dedekind ...

KEN RIBET:
The proof by Langlands and Tunnell ...

JOHN COATES:
Deligne, Rapoport, Katz . ..
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715 NICK KATZ:
Mazur’s idea of using the deformation theory of Galois representa-
tions ...

BARRY MAZUR:
Igusa, Eichler, Shimura, Taniyama ...

720 PETER SARNAK:
Frey’s reduction ...

NICK KATZ:
The list goes on and on ...

BARRY MAZUR:
725  Bloch, Kato, Selmer, Frey, Fermat.
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