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Exercise 1.25 For each of the sets A and B below, determine whether 
A = B. 

(a) A = {1, −1, 2} and B = {x ∈ R : x3 − 2x2 − x + 2  =  0}. 
(b) A = {(2 cos t, 3 sin  t) :  t ∈ [0, 2π]} and 

2 2 

B = {(x, y) ∈ R2 : 
x

+ 
y

= 1}.
4 9 

(c) A = {x ∈ R : x = 
p 
, where p, q ∈ N} and B = Q. 

q 

Exercise 1.26 For each of the sets A and B below, find A ∪ B, A ∩ B and 
A − B. 

(a) A = {0, 2, 4} and B = {4, 5, 6}. 
(b) A = (−5, 3] and B = [2, 17]. 

(c) A = {(x, y) ∈ R2 : x2 + y2 ≤ 1} and B = {(x, y) ∈ R2 : x2 + y2 ≤ 4}. 

2 Functions 

After working through this section, you should be able to: 

(a) determine the image of a given function; 
(b) determine whether a given function is one-one and/or onto; 
(c) find the inverse of a given one-one function; 
(d) find the composite of two given functions. 

2.1 What is a function? 
In the previous unit we concentrated on real functions—that is, functions 
whose domains and codomains are subsets of R. You can think of these 
functions as machines for processing real numbers. For example, the real 
function defined by f (x) =  1/x can be regarded as a machine that 

∗ of f can Recall from Subsection 1.1 that 

1 
3 −

comes −1 
2 R

calculates the reciprocals of non-zero real numbers. When 3 is fed into the 
machine, out comes the number ; when  2 is fed into the machine, out 

; and so on. Indeed, any real number in the domain 
∗be processed by the machine to produce a real number in the codomain.	 R denotes the set of non-zero 

real numbers, R − {0}. 

Now imagine a machine that accepts an element x from a set A (not 
necessarily a subset of R), and processes it to produce a unique element 
f (x) in  a  set  B (again not necessarily a subset of R). By dropping the 
requirement that the machine processes and produces real numbers, we 
obtain the following more general definition of a function. 
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Definitions A function f is defined by specifying: 
• a set  A, called the  domain of f ; 
• a set  B, called  the  codomain of f ; 
• a rule x � −→ f (x) that associates with each element x ∈ A a


unique element f (x) ∈ B.


The element f (x) is the  image of x under f .


Symbolically, we write


f : A −→ B


x �
−→ f (x). 

We often refer to a function as a mapping, and say that f maps A to B 
and x to f (x). 

Since the domain A and the codomain B are no longer restricted to be sets 
of real numbers, we can now study many types of function in addition to 
the real functions that you met in Unit I1. We present a few examples. 

Distance function 
Functions of the form f : R2 −→ R can be used to specify quantities 
associated with points in the plane. For example, the function 

f : R2 −→ R 
2(x, y) � −→ x2 + y

gives the distance of each point (x, y) in the plane from the origin. 

Parametrisations 
In Unit I1, Section 5, you saw that functions of the form f : I −→ R2 , 
where I is an interval of R, can be used to parametrise curves in the plane. 
For example, the function 

f : [0, 2π] −→ R2


t �
−→ (cos t, sin t) 

is a parametrisation of the unit circle. 

Transformations of the plane 
Functions that have a geometric interpretation are often called 
transformations. Such functions include translations, reflections and 
rotations of the plane. We now present some simple examples. For each 
one, we give a diagram which shows the effect of the transformation on the 
square whose vertices are at (0, 0), (1, 0), (1, 1) and (0, 1); part of the 
square is shaded for clarity. 

These types of transformation 
were introduced in Unit I1, 
Section 1, Frames 10, 18 and 20. 
You will study more complicated 
transformations in the Linear 
Algebra Block. 
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The transformation 

f : R2 −→ R2


(x, y) �
−→ (x + 2, y) 

is a translation of the plane that shifts (or translates) each point to the 
right by 2 units. 

The transformation 

f : R2 −→ R2


(x, y) �
−→ (− x, y) 

is a reflection of the plane in the y-axis. 

The transformation 

f : R2 −→ R2


(x, y) �
−→ (− x, − y) 

is a rotation of the plane through π about the origin. 

Exercise 2.1 For each of the following functions f : R2 −→ R2, state 
whether f is a translation, reflection or rotation of the plane. 

(a) f(x, y) = (x + 2, y  + 3)  For simplicity, we write f(x, y) 

(b) f(x, y) = (x, − y) instead of f((x, y)). 

(c) f(x, y) = (− y, x) 
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Functions on finite sets 
It is often useful to consider a function whose domain is a finite set. For 
example, we can define a function whose domain is the set 

A = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9} 

by 

f : A −→ A


x �
−→ 9 − x. 

When the domain of a function f has a small number of elements, we can 
specify the rule of f by listing the image f(x) of each  element  x in the 
domain. For example, let A = { 0, 1, 2, 3} and B = { 2, 3, 4, 5} ; then  we  can  
define a function f : A −→ B by the rule 

f(0) = 2, f(1) = 2, f(2) = 4, f(3) = 5. 

We can represent the behaviour of this function by a diagram, as shown 
below. 

There is exactly one arrow from each element in the domain, since each For example, for this function, 3 
element in the domain has exactly one image in the codomain. There may is not an image at all, 5 is the 

be no arrows, one arrow or several arrows going to an element in the image of 3 only, and 2 is the 

codomain, since an element in the codomain may not be an image at all, image of both 0 and 1. 

may be an image of exactly one element in the domain, or may be an 
image of several elements in the domain. 

Exercise 2.2 Which of the following diagrams correspond(s) to a

function?


Identity functions 
Associated with any set A, there is a particularly simple function whose 
domain and codomain are the set A. This is the identity function iA which We sometimes omit the 
maps each element of A to itself. subscript A if we do not need to 

emphasise the set. 
For example, let A = { 0, 1, 2, 3} ; then the rule of the identity function is 

iA(0) = 0, iA(1) = 1, iA(2) = 2, iA(3) = 3. 

The following definition applies to any set A, finite or infinite. 
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Definition The identity function on a set A is the function 

iA : A −→ A


x �
−→ x. 

2.2 Image of a function 
The rule associated with a function tells us how to find the image of any 
element in the domain. Often, however, we need to consider the images of 
a whole subset of elements drawn from the domain; for example, in 
geometry, we frequently wish to consider the effect of a transformation on 
a plane figure, a subset of R2 . 

Definition Given a function f : A −→ B, and a subset S of A, the  
image, or  image set, of  S under f , written f (S), is the set 

f (S) =  { f (x) :  x ∈ S} . 

For example, suppose that S is the square with vertices at (0, 0), (1, 0), 
(1, 1) and (0, 1), and we want to find the image of S under the function 

f : R2 −→ R2 

(x, y) � −→ (x + 2, y). 

This function is the translation of the plane which moves each point (x, y) 
to the right by 2. The image of S is therefore the square with vertices at 
f (0, 0) = (2, 0), f (1, 0) = (3, 0), f (1, 1) = (3, 1) and f (0, 1) = (2, 1). 

Sometimes we wish to consider the image of the whole domain of a 
function: this is referred to as the image, or image set, of the function. 

Definition The image, or  image set, of a function f : A −→ B is 
the set 

f (A) =  { f (x) :  x ∈ A} . 

The image of a function is a subset of its codomain. It need not be equal 
to the codomain because there may be some elements of the codomain that 
are not images of elements in the domain. 

When the domain of a function f has a small number of elements, we can 
find the image of f by finding the image of each element in the domain, 
and listing them to form a set. 

Example 2.1 Let A = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9} . 

Find the image of the function	 Recall that [x], the integer part 
of x, is the largest integer that is 

f : A −→ A	 less than or equal to x. For  
−→ 1	 example, [3.7] = 3, [3] = 3 and x � x .2 [− 3.7] = − 4. 
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Solution The images of the elements of A are 

f(0) = 0, f(1) = 0, f(2) = 1, f(3) = 1, f(4) = 2, 
f(5) = 2, f(6) = 3, f(7) = 3, f(8) = 4, f(9) = 4. 

So the image of f is f(A) =  { 0, 1, 2, 3, 4} . 

Exercise 2.3 Let A = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9} . 

Find the image of the function 

f : A −→ A


x �
−→ 9 − x. 

In Exercise 2.3 you should have found that the image and the codomain 
coincide. In other words, each element of the codomain is the image of an 
element in the domain. A function with this property is said to be onto. 

Definition A function f : A −→ B is onto if f(A) =  B. 

Exercise 2.4 Which of the following diagrams correspond(s) to an 
onto function? 

Example 2.2 For each of the following functions, find its image and 
determine whether it is onto. Some texts refer to an onto 

(a)	 f : R −→ R (b) f : R −→ R (c) f : R2 −→ R2 function as a surjective function. 

−→ 2x − 5 x � −→ (x + 1, y + 2)  x �	 −→ x2 (x, y) � 
(d)	 f : A−→ A, where A = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9} 

x � −→ 1 x2 

Solution 

(a)	 The sketch of the graph of f shown in the margin suggests that the 
image of f is the whole of R. To confirm this, we prove algebraically 
that f(R) =  R. 

We know that f(R) ⊆ R, so we must show that f(R) ⊇ R. 

Let y be an arbitrary element in R. We must show that y ∈ f(R); that

is, there exists an element x in the domain R such that


f(x) =  y; that  is, 2x − 5 =  y. 

Rearranging this equation, we obtain


y + 5 

x = 

2 
. 

This is in R and satisfies f(x) =  y, as required. Thus f(R) ⊇ R. In this solution, we use ⊇ , 
rather than ⊆ , so that the image 

Since f(R) ⊆ R and f(R) ⊇ R, it follows that f(R) =  R, so the image is always on the left and the 
of f is indeed R. codomain on the right. 

The codomain of f is also R, so  f is onto. 
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(b)	 The sketch of the graph of f shown in the margin suggests that the 
image of f is [0, ∞ ). We now prove algebraically that f(R) = [0, ∞ ). 

Let x be an arbitrary element in the domain R; then  f(x) =  x2 ≥ 0, so

f(R) ⊆ [0, ∞ ).


We must show that f(R) ⊇ [0, ∞ ). 

Let y be an arbitrary element in [0, ∞ ). We must show that there 
exists an element x in the domain R such that 

2f(x) =  y; that  is, x  = y. 
√

Now x = y R (since y ≥ f(x) =  yis in 0) and satisfies , as required. 
Thus f(R) ⊇ [0, ∞ ).	 Alternatively, we could choose √ 
Since f(R) ⊆ [0, ∞ ) and  f(R) ⊇ [0, ∞ ), it follows that f(R) = [0, ∞ ), the real number x = − y, 

so the image of f is [0, ∞ ), as expected. which also satisfies f(x) =  y. 

The interval [0, ∞ ) is not the whole of the codomain, so f is not onto. 

(c)	 This function is a translation of the plane that shifts each point to the 
right by 1 unit and up by 2 units. This suggests that f(R2) =  R2 . 

We know that f(R2) ⊆ R2, so we must show that f(R2) ⊇ R2 . 

Let (x , y′) be an arbitrary element in the codomain R2 . We must 
show that there exists an element (x, y) in the domain R2 such that 

f(x, y) = (x , y  ′); that is, x = x + 1, y  ′ = y + 2. 

Rearranging these two equations, we obtain 

x = x ′ − 1, y  = y ′ − 2. 

With these values, (x, y) ∈ R2 and f(x, y) = (x , y′), as required. Thus 
f(R2) ⊇ R2 . 

Since f(R2) ⊆ R2 and f(R2) ⊇ R2, it follows that f(R2) =  R2, so  the  
image of f is R2, as expected. 

The codomain of f is also R2, so  f is onto. 

(d)	 In Example 2.1, we showed that the image of this function is 
{ 0, 1, 2, 3, 4} . This is not the whole of the codomain, so f is not 
onto. 

Exercise 2.5 For each of the following functions, find its image and 
determine whether it is onto. 

(a)	 f : R −→ R (b) f : R2 −→ R2


−→ 1 +  x2 (x, y) �
x �	 −→ (x, − y) 

2.3 Inverse functions 
Given a function 

f : A −→ B


x �
−→ f(x), 

it is sometimes possible to define an inverse function that ‘undoes’ the 
effect of f by mapping each image element f(x) back to the element x 
whose image it is. For example, a rotation can be ‘undone’ by a rotation in 
the opposite direction. 
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However, consider the function 

f : A −→ A, where A = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9} , 

x � −→ 1 x .2 

We know that f(2) = f(3) = 1, and so a function that ‘undoes’ the effect 
of f must map the number 1 to the number 2 and to the number 3, which 
is impossible. Thus, in this case, no inverse function exists. This function 
f is an example of a function that is many-one. A many-one function does 
not have an inverse function. 

Definitions A function f : A −→ B is one-one if each element of

f(A) is the image of exactly one element of A; that is,


if x1, x2 ∈ A and f(x1) =  f(x2), then x1 = x2.


A function that is not one-one is many-one.


Remark Thus a function f is one-one if it maps distinct elements in the 
domain A to distinct elements in the image f(A). 

To prove that a function f is not one-one, it is sufficient to find a single 

Some texts refer to a one-one 
function as an injective function. 

We write x1, x2 ∈ A as 
shorthand for x1 ∈ A and 
x2 ∈ A. 

The term ‘one-one’ is often read 
as ‘one to one’; similarly 
‘many-one’ is often read as 
‘many to one’. 

counter-example—that is, a pair of distinct elements in the domain A with 
the same image in f(A). 

Exercise 2.6 Which of the following diagrams correspond(s) to a 
one-one function? 

Example 2.3 Determine which of the following functions are one-one. 

(a)	 f : R −→ R (b) f : R −→ R (c) f : R2 −→ R2 

−→ 2x − 5 x � −→ (x + 1, y  + 2)  x �	 −→ x2 (x, y) � 
Solution 

(a)	 The graph suggests that f is one-one. We now prove this algebraically. 
Suppose that f(x1) =  f(x2); then 

2x1 − 5 =  2x2 − 5, 

so 2x1 = 2x2, and hence x1 = x2. 

Thus f is one-one. 

(b)	 The graph suggests that f is not one-one. To show that f is not 
one-one, we just need to find two distinct points in the domain of f 
with the same image. For example, 

f(2) = f(− 2) = 4, 

so f is not one-one. 

27 



] 

( ) 

Unit I2 Mathematical language 

(c)	 This function is a translation of the plane, and so we expect it to be 
one-one. We now prove this algebraically. 

Suppose that f(x1, y1) =  f(x2, y2); then 

(x1 + 1, y1 +  2) = (x2 + 1, y2 + 2). 

Thus 

x1 + 1  =  x2 + 1  and  y1 + 2  =  y2 + 2,

so x1 = x2 and y1 = y2.


Hence (x1, y1) = (x2, y2), so f is one-one. 

Exercise 2.7 Determine which of the following functions is one-one. 

(a)	 f : R −→ R (b) f : R2 −→ R2


−→ 1 +  x2 (x, y) �
x �	 −→ (x,− y) 

For a one-one function f : A −→ B, we have the situation illustrated in the 
margin. Each element y in f(A) is the image of a unique element x in A, 
and so we can reverse the arrows to obtain the inverse function f−1, with  
domain f(A) and  image  A, which maps y back to x. 

Definition Let f : A −→ B be a one-one function. Then f has an 
inverse function f−1 : f(A) −→ A, with rule  

f−1(y) =  x, where y = f(x). 

A function f : A −→ B that is both one-one and onto has an inverse 
function f−1 : B −→ A. Such a function f is said to be a one-one 
correspondence, or a  bijection, between the sets A and B. 

Example 2.4 For each of the following functions, determine whether f 
has an inverse function f−1; if it exists, find it. 

(a)	 f : R −→ R (b) f : R −→ R (c) f : R2 −→ R2 

−→ 2x − 5 x � −→ (x + 1, y  + 2)  x �	 −→ x2 (x, y) � 
(d)	 f : A−→ A [ where A = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9} . 

x � −→ 1 x2 

Solution 

(a)	 In Example 2.3(a), we showed that f is one-one, so f has an inverse 
function. 

In Example 2.2(a), we showed that the image of f is R and that, for

each y in the image R, we  have 


y + 5  
y = f 

2 
. 

So f−1 is the function 

f−1 : R −→ R 

−→ 
y + 5  

y � 
2 

. 

This definition can be expressed in terms of x as It does not matter whether the 
definition of f−1 is expressed in 

f−1 : R −→ R terms of x or y, but it is more 
x + 5  usual to use x in the definition 

x � −→ 
2 

.	 of a real function. 
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(b)	 In Example 2.3(b), we showed that f is not one-one, so f does not 
have an inverse function. 

(c)	 In Example 2.3(c), we showed that f is one-one, so f has an inverse  
function. 

In Example 2.2(c), we showed that the image of f is R2 and that, for 
each (x , y′) in the  image  R2, we  have 	 Geometrically, f is the 

translation of the plane that 
(x , y  ′) =  f(x ′ − 1, y  ′ − 2). shifts each point to the right by 

So f−1 is the function 1 unit and up by 2 units. Since 
f−1 undoes the effect of f , the  

f−1 : R2 −→ R2 inverse f−1 is the translation 

(x , y  ′) � that shifts each point to the left −→ (x ′ − 1, y  ′ − 2). by 1 unit and down by 2 units. 
This definition can be expressed in terms of x and y as 

f−1 : R2 −→ R2 

(x, y) � −→ (x − 1, y  − 2). 

(d)	 At the beginning of this subsection, we showed that f is not one-one, 
so f does not have an inverse function. 

Exercise 2.8 For each of the following functions, determine whether

f has an inverse function f−1; if it exists, find f−1 .


(a)	 f : R −→ R (b) f : R2 −→ R2 (c) f : R −→ R

−→ 1 +  x2 (x, y) � −→ 8x + 3 
x �	 −→ (x,− y) x � 

Hint: For parts (a) and (b), use your answers to Exercises 2.5 and 2.7. 

Restrictions 
When given a function f : A −→ B, it  is often convenient  to restrict  
attention to the behaviour of f on some subset C of A. For example, 
consider the function 

f : R −→ R


x �
−→ x 2 . 

This function is not one-one and so does not have an inverse function. 
However, if the domain of f is replaced by the set C = [0,∞ ), then we 
obtain a related function 

g : C −→ R


x �
−→ x 2 . 

The rule is the same as for f , but the domain is ‘restricted’ to produce a

new function g that is one-one and so has an inverse.


The function g is an example of a restriction of f in the sense that

g(x) =  f(x) for all x in the domain of g.


More generally, we define a restriction as follows.


Definition Let f : A −→ B and let C be a subset of the domain A. 
Then the function g : C −→ B defined by 

g(x) =  f(x), for x ∈ C, 

is the restriction of f to C. 
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Exercise 2.9 Let f be the function 

f : R −→ R


x �
−→ | x| .

Write down a restriction of f that is one-one.


2.4 Composite functions 
Earlier, we described how a function may be regarded as a machine that 
processes elements in the domain to produce elements in the codomain. 
Now suppose that two such machines are linked together, so that the 
elements emerging from the first machine are fed into the second machine 
for further processing. The overall effect is to create a new ‘composite’ 
machine that corresponds to a so-called composite function. 

Consider the real functions 
f : R −→ R and 

g : R −→ R

−→ x2 x �
x � −→ 2x − 5. 

When the machines for f and g are linked together so that objects are first 
processed by f and then by  g, we obtain the ‘composite’ machine 
illustrated by the dark blue box in the diagram below. 

For example, when 2 is fed into the machine, it is first squared by f to 
produce the number 4, and then 4 is processed by g to give the number 
(2 × 4) − 5 = 3.  

Similarly, when an arbitrary real number x is fed into the machine, it is 
2first processed by f to give the real number x . Since the domain of g is 

the whole of R, the  number  x2 can then be processed by g to give 2x2 − 5. 
Thus, overall, the composite machine corresponds to a function, denoted 
by g ◦ f , whose rule is 

(g ◦ f)(x) =  g(f(x)) = 2x 2 − 5 

and whose domain is R. 

In general, if f : A −→ B and g : B −→ C, then we can form the composite 
function 

g ◦ f : A −→ C


x �
−→ g(f(x)). 

Exercise 2.10 Let f and g be the functions 

f : R −→ R and 
g : R −→ R


−→ − x x �
x � −→ 3x + 1.


Determine the composite functions


(a) g ◦ f ,  (b)  f ◦ g. 

The composite functions g ◦ f and f ◦ g are not equal in general, as you 
saw in the above exercise. 

Remember that g ◦ f means 
f first, then g. 

Here the domain of the function 
g : B −→ C is  the same as the  
codomain of the function 
f : A −→ B. 
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Composite functions have many uses in mathematics. In geometry, they 
are frequently used to examine the effect of one transformation of the 
plane followed by another. 

Suppose, for example, that f and g are the reflections of the plane in the 
x-axis and y-axis respectively: 

f : R2 −→ R2 g : R2 −→ R2 
and −→ (x, − y) (x, y) �(x, y) � −→ (− x, y). 

The composite function g ◦ f describes the overall effect of first reflecting 
in the x-axis (changing the sign of y) and then reflecting in the y-axis 
(changing the sign of x). 

The rule of  g ◦ f is 

(g ◦ f )(x, y) =  g(f (x, y)) = g(x, − y) 
= (− x, − y). 

Thus g ◦ f is the function 

g ◦ f : R2 −→ R2 

(x, y) � −→ (− x, − y), 

which rotates the plane through π about the origin. 

For example, a square is transformed as follows. 

Exercise 2.11 Determine the composite function f ◦ g of the 
following transformations of the plane: 

f : R2 −→ R2 g : R2 −→ R2 

and −→ (x, − y) (x, y) �(x, y) � −→ (− x, y). 

So far, we have considered the composite function g ◦ f only when the 
domain of the function g : B −→ C is the same as the codomain of the 
function f : A −→ B. We can, however, form the composite function g ◦ f 
when g and f are any two functions. 
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For example, consider the functions 

g : R − {  1}−→  Rf : R −→ R and 1 −→ x2 x �x � −→ . 
x − 1 

Here the domain of g is not equal to the codomain of f , but we can still 
consider the composite function g ◦ f , with the rule 

1
(g ◦ f )(x) =  g(f(x)) = g(x 2) =  . 

x2 − 1 

In this case, the domain of g ◦ f cannot be R (the domain of f ) since  1  
and − 1 are both mapped by f to the number 1, which is not in the domain 
of g; this means that no further processing is possible. 

To overcome this difficulty, we take the domain of g ◦ f to be the difference

R − {  1, − 1} . So the composite function g ◦ f is 

g ◦ f : R − {  1, − 1} −→  R

1


x � −→ 
x2 − 1 

. 

The general situation is illustrated below. Given any two functions 
f : A −→ B and g : C −→ D, the rule of the composite function g ◦ f is 

(g ◦ f )(x) =  g(f(x)). 

The domain of g ◦ f consists of all those elements x in A for which f (x) 
lies in C (the domain of g). The codomain of g ◦ f is defined to be D (the 
codomain of g). 

Definition Let f : A −→ B and g : C −→ D be any two functions; 
then the composite function g ◦ f has 

domain { x ∈ A : f (x) ∈ C} , 

codomain D, 

rule (g ◦ f )(x) =  g(f(x)). 

In the example on page 32, the domain of g ◦ f is  just the  set of values for  
which the rule of g ◦ f is defined. This is not the case in the following 
exercise. 

This definition allows us to 
consider the composite of any 
two functions, although in some 
cases the domain may turn out 
to be the empty set ∅. Some  
authors insist upon f(A) ⊆ C as 
a condition for g ◦ f to exist. 
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Section 2 Functions 

Exercise 2.12 Determine the composite function g ◦ f for the 
following functions f and g: 

f : [− 1, 1] −→ R g : R − {  −  2}−→  R

x �
−→ 3x + 1 and 3 

x � −→ 
x + 2  

. 

Composites and inverses 
Suppose that f : A −→ B is a one-one and onto function. Then f has an 
inverse function f −1 : B −→ A. We can therefore consider the effect that 
the composite function f −1 ◦ f : A −→ A has on an arbitrary element x 
in A. First, f maps x to an element y = f (x) in  f (A). Then f −1 ‘undoes’ 
the effect of f and maps y back to x. Overall, the effect of f −1 ◦ f is to 
leave x fixed: that is, (f −1 ◦ f )(x) =  x. Since  x is an arbitrary element 
of A, it follows that f −1 ◦ f fixes all the elements of A. In other words, 
f −1 ◦ f = iA. 

Similar arguments can be used to show that f ◦ f −1 = iB . So,  if  
f : A −→ B has an inverse function f −1 : B −→ A, then  

f −1 ◦ f = iA and f ◦ f −1 = iB . 

The converse of this statement is also true: if a function g : B −→ A 
satisfies 

g ◦ f = iA and f ◦ g = iB , 

then g is the inverse function of f . We shall prove this after Exercise 2.13. 
It leads to the following strategy. 

Strategy 2.1 To show that the function g : B −→ A is the inverse

function of the function f : A −→ B.


1. Show that f (g(x)) = x for each x ∈ B; that is, f ◦ g = iB . 

2. Show that g(f (x)) = x for each x ∈ A; that is, g ◦ f = iA. 

In practice, we can sometimes use Strategy 2.1 as an alternative way of 
finding an inverse function. We make an inspired guess at the function, 
and use Strategy 2.1 to check that our guess is correct. 

Example 2.5 Find the inverse of the function 

g : R −→ R


x �
−→ 1 x.2 

Solution We guess that the inverse function is 

f : R −→ R


x �
−→ 2x. 

We use Strategy 2.1 to check that our guess is correct. 
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1.	 For each x ∈ R, we have  

f (g(x)) = f ( 1 x) = 2  × 2 
1 x = x;2 

that is, f ◦ g = iR. 

2.	 For each x ∈ R, we have  

g(f (x)) = g(2x) =  1 × 2x = x;2 

that is, g ◦ f = iR. 

Since f ◦ g = iR and g ◦ f = iR, it follows that g is the inverse function 
of f . 

Exercise 2.13 Use Strategy 2.1 to show that 

g : R −→ R


x �
−→ x − 3


is the inverse function of


f : R −→ R


x �
−→ x + 3. 

We end this section by proving, as promised, that if the functions 
f : A −→ B and g : B −→ A satisfy 

g ◦ f = iA and f ◦ g = iB , 

then g is the inverse function of f . That is, we have to show that if the two 
steps of Strategy 2.1 hold, then f has an inverse function, and the inverse 
function is equal to g. Suppose that the two steps of Strategy 2.1 hold. 

First we show that f is one-one. Suppose that f (x1) =  f (x2); then 

g(f (x1)) = g(f (x2)), 

so, by step 2, x1 = x2. Thus  f is one-one and so it has an inverse

function f −1 .


Now we find the image of f . We know that the image of f is a subset of its

codomain B; we shall show that it is equal to B by showing that every

element y of B is the image under f of some element in A. Suppose that

y ∈ B. Then, by step 1,


f (g(y)) = y; 

that is, y is the image under f of the element g(y), as required. Thus the 
image of f is B (that is, f is onto), and so f −1 has domain B. 

We now know that each of the functions f −1 and g has domain B and 
codomain A. To show that they are equal, it remains to show that 
g(y) =  f −1(y) for each element y of B. Let  y be an arbitrary element of B. 
Then y = f (x) for some element x of A. So  

f −1(y) =  x, 

and, by step 2, 

g(y) =  g(f (x)) = x. 

Hence f −1 and g are indeed equal functions. 
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Further exercises 
Exercise 2.14 For each of the following transformations f : R2 −→ R2 , 
state whether f is a translation, reflection or rotation of the plane. 

(a) f(x, y) = (y, − x)  (b)  f(x, y) = (x − 2, y  + 1)  

Exercise 2.15 Draw a diagram showing the image of T , the triangle with 
vertices at (0, 0), (1, 0) and (1, 1), under each of the functions f of 
Exercise 2.14. 

Exercise 2.16 For each of the following functions, find its image and 
determine whether it is onto. 

(a)	 f : R2 −→ R2 (b) f : R −→ R 
−→ (− y, x) x �(x, y) �	 −→ 7 − 3x 

(c)	 f : R −→ R (d) f : [0, 1] −→ R 
−→ x2 − 4x + 3  x �x �	 −→ 2x + 3  

Exercise 2.17 Determine which of the functions in Exercise 2.16 are 
one-one. 

Exercise 2.18 Determine which of the functions in Exercise 2.16 has an 
inverse, and find the inverse f−1 for each one which does. 

Exercise 2.19 Determine the composite f ◦ g for each of the following 
pairs of functions f and g. 

(a)	 f : R −→ R and g : R − {  2, − 2}−→  R 
x � −→ 7 − 3x	 1 

x � −→ 
x2 − 4 

. 

(b) f : R2 −→ R2 g : R2 −→ R2 
and −→ (− y, x) (x, y) �(x, y) �	 −→ (y, x). 

3 The language of proof 

After working through this section, you should be able to: 

(a) understand what is asserted by various types of mathematical

statements, in particular implications and equivalences;


(b) produce simple proofs of various types, including direct proof, proof

by induction, proof by contradiction and proof by contraposition;


(c) read and understand the logic of more complex proofs; 
(d) disprove a simple false implication by providing a counter-example. 

You will have seen many examples of mathematical statements, theorems 
and proofs during your study of mathematics. In this section we examine 
these concepts more closely. This should help you to become more adept 
at reading and understanding mathematics, and should make you more 
familiar with the structures of various different types of mathematical 
proof. It should also help you to express your own mathematical thoughts 
and ideas more clearly. 
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