
Section 3 The language of proof 

Further exercises 
Exercise 2.14 For each of the following transformations f : R2 −→ R2 , 
state whether f is a translation, reflection or rotation of the plane. 

(a) f(x, y) = (y, − x)  (b)  f(x, y) = (x − 2, y  + 1)  

Exercise 2.15 Draw a diagram showing the image of T , the triangle with 
vertices at (0, 0), (1, 0) and (1, 1), under each of the functions f of 
Exercise 2.14. 

Exercise 2.16 For each of the following functions, find its image and 
determine whether it is onto. 

(a)	 f : R2 −→ R2 (b) f : R −→ R 
−→ (− y, x) x �(x, y) �	 −→ 7 − 3x 

(c)	 f : R −→ R (d) f : [0, 1] −→ R 
−→ x2 − 4x + 3  x �x �	 −→ 2x + 3  

Exercise 2.17 Determine which of the functions in Exercise 2.16 are 
one-one. 

Exercise 2.18 Determine which of the functions in Exercise 2.16 has an 
inverse, and find the inverse f−1 for each one which does. 

Exercise 2.19 Determine the composite f ◦ g for each of the following 
pairs of functions f and g. 

(a)	 f : R −→ R and g : R − {  2, − 2}−→  R 
x � −→ 7 − 3x	 1 

x � −→ 
x2 − 4 

. 

(b) f : R2 −→ R2 g : R2 −→ R2 
and −→ (− y, x) (x, y) �(x, y) �	 −→ (y, x). 

3 The language of proof 

After working through this section, you should be able to: 

(a) understand what is asserted by various types of mathematical

statements, in particular implications and equivalences;


(b) produce simple proofs of various types, including direct proof, proof

by induction, proof by contradiction and proof by contraposition;


(c) read and understand the logic of more complex proofs; 
(d) disprove a simple false implication by providing a counter-example. 

You will have seen many examples of mathematical statements, theorems 
and proofs during your study of mathematics. In this section we examine 
these concepts more closely. This should help you to become more adept 
at reading and understanding mathematics, and should make you more 
familiar with the structures of various different types of mathematical 
proof. It should also help you to express your own mathematical thoughts 
and ideas more clearly. 

35 



Unit I2 Mathematical language 

3.1 Statements and negations 
The building blocks of mathematical theorems and proofs are assertions 
called statements, also known as propositions. In mathematics, a 
statement is an assertion that is either true or false, though we may not 
know which. The following are examples of statements. 
1. The equation 2x − 3 = 0 has solution x =
 3

2 . 
2. 1 + 1 = 3. 
3.  1 + 3 + 5 +  · · · + (2n − 1) = n2 for each positive integer n. 
4. There is a real number x such that cos x = x. 
5. Every even integer greater than 2 is the sum of two prime numbers. 
6. x is greater than 0. 

In the above list, Statement 1 is true, and Statement 2 is false.

Statements 3 and 4 are in fact both true, although this is probably not

immediately obvious to you in either case. At the time of writing this unit,

it is not known whether Statement 5 is true or false.


Statement 6 is a little different from the others, since whether it is true or

false depends on the value of the variable x. A statement, such as this one,

that is either true or false depending on the value of one or more variables,

is called a variable proposition. When considering a variable proposition,

we must have in mind a suitable set of values from which the possible

values of the variable are taken. For example, the set associated with

Statement 6 might be R, since for each real number x the assertion is

either true or false. A variable proposition with several variables may have

several such associated sets.


Often the set or sets associated with a variable are clear from the context

and so we do not state them explicitly. In particular, unless it is stated

otherwise, it is conventional to assume that if the variable is x or y, then 

the associated set is R, whereas if the variable is n or m, then the

associated set is is Z or N, depending on the context. We follow this

convention in this section.


An example of an assertion that is not a mathematical statement is ‘{1, 2}

is greater than 0’, which is meaningless and therefore neither true nor

false. Other examples are ‘π is interesting’ and ‘1000 is a large number’,

which are not precise enough to be either true or false.


Statements can be combined in various ways to give more complicated

statements. For example, the statement


x is greater than 0 and x is an integer 

is true if both of the statements ‘x is greater than 0’ and ‘x is an integer’ 
are true, and false otherwise. Thus the combined statement is true if 
x = 4, for example, but false if x = 3.5. Similarly, the statement 

x is greater than 0 or x is an integer 

is true if at least one of the statements ‘x is greater than 0’ and ‘x is an 
integer’ is true, and false otherwise. Thus this combined statement is true 
if x = 4,  x = 3.5 or  x = −4, for example, but false if x = −3.5. 

Every statement has a related statement, called its negation, which  is  
true when the original statement is false, and false when the original 
statement is true. The negation of a statement P can usually be written as 
‘it is not the case that P ’, but there are often better, more concise ways to 
express it. Thus, for example, the negation of the statement ‘x is greater 
than 0’ can be written as ‘it is not the case that x is greater than 0’, but is 

We shall prove that Statement 3 
is true later in this section. You 
can check that Statement 4 is 
true by noting that the graphs 
of y = cos  x and y = x intersect; 
a rigorous proof can be obtained 
by using the Intermediate Value 
Theorem, which is given later in 
the course. Statement 5 is 
known as Goldbach’s conjecture; 
mathematicians have been 
trying to prove it since 1742. 

The word ‘or’ is used in its 
inclusive sense in mathematical 
statements. 
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better expressed as ‘x is not greater than 0’ or even ‘x ≤ 0’. The process of 
finding the negation of a statement is called negating the statement. Here 
are some more examples. 

Example 3.1 Express concisely the negation of each of the following 
statements. 

(a)	 There is a real number x such that cos x = x. 

(b)	 Both x and y are integers. 

Solution 

(a)	 The negation is ‘it is not the case that there is an real number x such 
that cos x = x’; that is, ‘there is no real number x such that cos x = x’. 

(b)	 The negation is ‘it is not the case that both x and y are integers’; that 
is, ‘at least one of x and y is not an integer’. 

Exercise 3.1 Express concisely the negation of each of the following 
statements. 

(a)	 x = 5 
3 is a solution of the equation 3x + 5  =  0.  

(b)	 π is less than 5. 

(c) There is an integer that is divisible by 3 but not by 6. 

(d) Every real number x satisfies the inequality x2 ≥ 0. 

(e) The integers m and n are both odd. 

(f )	 At least one of the integers m and n is odd. 

A theorem is simply a mathematical statement that is true. However, we 
usually reserve the word for a statement that is considered to be of some 
importance, and whose truth is not immediately obvious, but instead has 
to be proved. A lemma is a ‘less important’ theorem that is useful when 
proving other theorems. A corollary is a theorem that follows from 
another theorem by a short additional argument. Theorems are sometimes 
called results. 

3.2 Implications and equivalences 
Many mathematical statements are of the form ‘if something, then 
something else’, for example: 

2if x > 2, then x > 4. 

This type of statement is called an implication. An implication is made 
up from two smaller statements, which in the example above are ‘x > 2’ 
and ‘x2 > 4’, and can be expressed by combining these statements using 
the words ‘if’ and ‘then’. In an implication ‘if P , then  Q’, the statement P 
is called the hypothesis of the implication, and the statement Q is called 
the conclusion. It is important to be clear about exactly what an 
implication asserts. The above statement asserts only that if you know that 
x > 2, then you can be sure that x2 > 4. It does not assert anything about 
the truth or falsity of ‘x2 > 4’ when x is not greater than 2. In general, the 
implication ‘if P , then  Q’ asserts that if P is true, then Q is also true; it 
does not assert anything about the truth or falsity of Q when P is false. 

Section 3 The language of proof 

Another way of expressing this 
negation is ‘for all real numbers 
x, cos  x �= x’. 

If the hypothesis P of an 
implication consists of several 
smaller statements, combined 
using ‘and’—for example, the 
implication might be expressed 
in the form ‘if P1, P2 and P3, 
then Q’—then  it is common to  
consider each of the smaller 
statements as a separate 
hypothesis, and to say that the 
implication has several 
hypotheses. Similarly, an 
implication can have several 
conclusions. 
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Unit I2 Mathematical language 

If x is a real variable, then the statement 
2if x > 2, then x > 4 

is true because for every real number x for which ‘x > 2’ is true, ‘x2 > 4’ is 
true also. Strictly speaking, this statement should be expressed as 

2for all x ∈ R, if  x > 2, then x > 4. 

However, it is conventional to omit the initial ‘for all x ∈ R’, and interpret 
the statement as if it were there. In general, throughout this course, and 
throughout almost any mathematical text that you will read, a statement 
of the form ‘if P , then  Q’ in which  P and/or Q are variable propositions is 
similarly interpreted as applying to all values of the variables in the 
statements P and Q. 

An implication does not have to be expressed using the words ‘if’ and 
‘then’—there are many other ways to convey the same meaning. The 
left-hand side of the table below lists some ways of expressing the 
implication ‘if P , then  Q’. The right-hand side gives similar examples, but 
for the particular implication ‘if x > 2, then x2 > 4’. 

Ways of writing Ways of writing 
‘if P , then  Q’  ‘if  x > 2, then x2 > 4’ 

P implies Q  x > 2 implies x2 > 4 

P ⇒ Q  x > 2 ⇒ x2 > 4 

Q whenever P x2 > 4 whenever x > 2 

(or: x2 > 4, for all x > 2) 
Q follows from P x2 > 4 follows from x > 2 

P is sufficient for Q  x > 2 is sufficient for x2 > 4 

Q is necessary for P x2 > 4 is necessary for x > 2 

P only if Q  x > 2 only if  x2 > 4 

Exercise 3.2 Rewrite each of the following statements in the form ‘if 
P , then  Q’. In each case, state whether you think the implication is 
true. You are not asked to justify your answers. 

(a) x2 − 2x + 1  =  0  ⇒ (x − 1)2 = 0.  
3(b) Whenever n is odd, so is n . 

(c) Every integer that is divisible by 3 is also divisible by 6. 

(d) x > 2 only if  x > 4. 

The converse of the implication ‘if P , then  Q’ is the implication ‘if Q, 
then P ’. For example, the converse of the implication 

2if x > 2, then x > 4 

is 
2if x > 4, then x > 2. 

In this example, the original implication is true, and its converse is false. It 
is also possible for an implication and its converse to be both true, or both 
false. In other words, knowledge of whether an implication is true or false 
tells you nothing at all about whether its converse is true or false. You 
should remember this important fact whenever you read or write 
implications. 

The symbol ⇒ is read as 
‘implies’. 

The form ‘P only if Q’ may  
seem strange at first; it asserts 
that the only circumstance in 
which P can  be true is if  Q is 
also true—that is, P implies Q. 

You will see how to prove or 
disprove statements like those in 
parts (b) and (c) formally later 
in this section. Whether the 
statement in part (a) is true or 
false may be established by 
algebraic manipulation. 

To see that the converse is false, 
consider, for example, x = −3. 
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To help you remember facts like this about statements, you may find it 
helpful to consider non-mathematical examples. For example, consider the 
implication ‘if Rosie is a sheep, then Rosie is less than two metres tall.’ 
This implication is true, but its converse, ‘if Rosie is less than two metres 
tall, then Rosie is a sheep’, certainly is not! 

Exercise 3.3 Write down the converse of each of the following 
statements about integers m and n. In each case, state whether you 
think the statement is true and whether you think the converse is 
true. You are not asked to justify your answers at this stage. 

(a) If m and n are both odd, then m + n is even. 

(b) If one of the pair m, n is even and the other is odd, then m + n is 
odd. 

The statement ‘if P , then  Q, and  if  Q, then  P ’, which asserts that the 
implication ‘if P , then  Q’ and its converse are both true, is usually 
expressed more concisely as ‘P if and only if Q’. Here are two examples. 
1. n is odd if and only if n2 is odd. 
2. x >  2 if and only if x2 > 4. 

Statements like these are called equivalences. Equivalence 1 above is 
true, because both implications are true, whereas equivalence 2 is false, 
because the implication ‘if x2 > 4, then x >  2’ is false. As with 
implications, there are many different ways to express equivalences. The 
table below lists some ways in which this can be done. 

Ways of writing Ways of writing 
‘P if and only if Q’ ‘n is odd if and only if n2 is odd’ 

Section 3 The language of proof 

‘P if Q’ means  ‘Q ⇒ P ’, and 
‘P only if Q’ means  ‘P ⇒ Q’. 

The symbol ⇔ is usually read as P ⇔ Q n is odd ⇔ n2 is odd 
‘if and only if’, or sometimes as 

P is equivalent to Q n is odd is equivalent to n2 is odd ‘is equivalent to’. 
P is necessary and sufficient for Q n  is odd is necessary and sufficient 

for n2 to be odd 

Exercise 3.4 For each of the following equivalences about integers, 
write down the two implications that it asserts, state whether you 
think each is true, and hence state whether you think the equivalence 
is true. You are not asked to justify your answers at this stage. 

(a) The product mn is odd if and only if both m and n are odd. 

(b) The product mn is even if and only if both m and n are even. 

Although a mathematical statement should normally be interpreted as 
meaning precisely what it says—no more and no less, there is one common 
exception to this rule. When giving a definition, we usually write ‘if’ when 
we really mean ‘if and only if’. For example, we write 

a function f : A −→ B is onto if f(A) =  B. 

3.3 Direct proof 
A proof of a mathematical statement is a logical argument that establishes 
that the statement is true. Here is a simple example. 

Example 3.2 Prove the following statement: 

If n is an odd number between 0 and 10, then n 2 is also odd. 
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Unit I2 Mathematical language 

Solution The odd numbers between 0 and 10 are 1, 3, 5, 7, and 9. The 
squares of these numbers are 1, 9, 25, 49 and 81, respectively, and these 
are all odd. 

In the above example, there were only a small number of possibilities to 
consider, and so it was easy to prove the statement by considering each 
one in turn. This method of proof is known as proof by exhaustion, 
because we exhaust all possibilities. In contrast, it is not possible to prove 
the statement ‘If n is an odd number, then n2 is also odd’ using proof by 
exhaustion, because there are infinitely many possibilities to consider. 
Most mathematical statements that you will come across cannot be proved 
by exhaustion, because there are too many possibilities to 
consider—usually infinitely many. Instead we must supply a general proof. 

Suppose that we wish to prove that the implication P ⇒ Q is true. We 
have to prove that whenever the statement P is true, the statement Q is 
also true. Often the best way to do this is to start out by assuming that P 
is true, and proceed as follows. If we know that the statement 

P ⇒ P1 

is true for some statement P1, then we can deduce that P1 is also true. 
Similarly, if we know that the statement 

P1 ⇒ P2 

is true for some statement P2, then we can deduce that P2 is also true. In 
this way we can build up a sequence of statements 

P,P1, P2, . . . ,  

each of which we know to be true under the assumption that P is true. The  
aim is to build up such a sequence 

P,P1, P2, . . . , Pn, Q,  

which leads to Q. If this can be achieved, then we have a proof of the 
implication P ⇒ Q. Here is an example. 

Example 3.3 Prove that if n is odd, then n2 is odd. 

Solution Let n be an odd integer. Then 

n = 2k + 1 for some integer k. 

Hence 

n 2 = (2k + 1)2 = (2k)2 + 2(2k) + 1  =  2(2k2 + 2k) + 1. 

This shows that n2 is an odd integer. 

In the above proof, statement P is ‘n is odd’, and we start by assuming 
that this is true. Statement P1 is ‘n = 2k + 1 for some integer k’, and so 
on. We use words like ‘then’ and ‘hence’ to indicate that one statement 
follows from another. 

Many of the true statements about odd and even integers that appeared in 
the exercises in the last subsection can be proved using ideas similar to 
those of the proof in Example 3.3; that is, we write an odd integer as 
2 × some integer + 1, and an even integer as 2 × some integer. (Similarly, 
we can often prove statements about multiples of 3 by writing each such 
number as 3 × some integer, and so on.) Here is another example. 

We see that n2 is odd because 
we have shown that n2 is equal 
to 2 times some integer plus 1. 

The string of equalities 
k2 = · · ·  = 2(2k2 + 2k) + 1  

in the proof in Example 3.3 can 
be regarded either as a sequence 
of three statements, namely 

n 2 = (2k + 1)2 , 
n 2 = (2k)2 + 2(2k) + 1,  
n 2 = 2(2k2 + 2k) + 1,  

or as a single statement 
asserting the equality of all four 
expressions. 
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Example 3.4 Prove that the sum of two odd integers is even. 

Solution Let x and y be odd integers. Then 

x = 2k + 1  and  y = 2l + 1 for some integers k and l. 

Hence 

x + y = (2k + 1) +  (2l +  1) = 2k + 2l + 2  =  2(k + l + 1). 

This shows that x + y is an even integer. 

We have seen that a sequence P,P1, P2, . . . , Pn, Q  of statements forms a 
proof of the implication P ⇒ Q provided that each statement is shown to 
be true under the assumption that P is true. In Examples 3.3 and 3.4 each 
statement in the sequence was deduced from the statement immediately 
before, but the sequence can also include statements that are deduced from 
one or more statements further back in the sequence, and statements that 
we know to be true from our previous mathematical knowledge. This is 
illustrated by the next example. 

A fact that you may already know which will be useful in this example, 
and also later in this section, is that every integer greater than 1 has a 
unique expression as a product of primes. For example, 
6468 = 2 × 2 × 3 × 7 × 7 × 11, and this is the only way to express 6468 as a 
product of primes (except of course that we can change the order of the 
primes in the expression). This fact is known as the Fundamental Theorem 
of Arithmetic. 

Example 3.5 Prove that for every integer n, the  number  n3 + 3n2 + 2n 
is divisible by 6. 

Solution Let n be an integer. Now 

n 3 + 3n 2 + 2n = n(n 2 + 3n + 2)  =  n(n + 1)(n + 2). 

Thus n3 + 3n2 + 2n is the product of three consecutive integers. We know 
that out of any two consecutive integers, one must be divisible by 2, and 
out of any three consecutive integers, one must be divisible by 3. It follows 
that the three factors n, n + 1  and  n + 2 include one that is divisible by 2, 
and one that is divisible by 3 (possibly the same one). Hence both the 
primes 2 and 3 are factors of n3 + 3n2 + 2n. Hence (by the Fundamental 
Theorem of Arithmetic) n3 + 3n2 + 2n can be expressed  as 2  × 3 × r for 
some integer r, and so it is divisible by 6 = 2 × 3. 

In this course you are expected to be able to produce only simple proofs 
yourself. However, you should also be able to read through more complex 
proofs like some of those later in the course, and understand why they 
prove the statements that they claim to prove. 

The next exercise gives you practice in the techniques that you have seen 
in this subsection. 

Exercise 3.5 Prove each of the following implications. 

(a) If n is an even integer, then n2 is even. 

(b) If m and n are multiples of k, then so  is  m + n. 

(c) If one of the pair m, n is odd and the other is even, then m + n is 
odd. 

(d) If n is a positive integer, then n2 + n is even. 

Section 3 The language of proof 

It is important to choose 
different symbols k and l here. 
We certainly cannot deduce 
from the first statement that 
x = 2k + 1  and  y = 2k + 1 for 
some integer k; that would be 
the case only if  x and y were 
equal! 

Recall that a prime number is an 
integer n, greater than 1, whose 
only positive factors are 1 and n. 

It is certainly not obvious that 
the Fundamental Theorem of 
Arithmetic is true! However, a 
proof is outside the scope of this 
unit. 
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If a proof of an implication is particularly simple, and each statement in 
the sequence follows directly from the one immediately before, then we 
sometimes present the proof by writing the sequence of statements in the 
form 

P ⇒ P1 ⇒ P2 ⇒ P3 ⇒  · · ·  ⇒  Pn ⇒ Q. 

This is particularly appropriate for proofs that depend mostly on algebraic 
manipulation. Here is an example. 

Example 3.6 Prove that if x(x − 2) = 3, then x = −1 or  x = 3.  

Solution 

x(x − 2) = 3 ⇒ x 2 − 2x − 3 = 0  

⇒ (x + 1)(x − 3) = 0 

⇒ x + 1  =  0  or  x − 3 = 0  

⇒ x = −1 or  x = 3. 

By proving the implication in Example 3.6, we showed that −1 and  3 are  
the only possibilities for solutions of the equation x(x − 2) = 3. We did not 
show that −1 and  3 actually  are solutions, since for that it is necessary to 
prove also that if x = −1 or  x = 3,  then  x(x − 2) = 3, that is, the converse 
of the given implication. Thus strictly we have not solved the equation! 
Whenever we solve an equation, an implication and its converse must both 
be proved; in other words, we need to prove an equivalence. We do this for 
the equation in Example 3.6 shortly. 

First we discuss how to prove equivalences in general. Since an equivalence 
asserts that two implications are true, the best way to prove it is usually to 
tackle each implication separately. However, if a simple proof of one of the 
implications can be found, in which each statement follows from the one 
before, then it is sometimes possible to ‘reverse all the arrows’ to obtain a 
proof of the converse implication. That is, if you have found a proof of the 
form 

P ⇒ P1 ⇒ P2 ⇒ P3 ⇒  · · ·  ⇒  Pn ⇒ Q, 

then you may find that also each of the following implications is true: 

Q ⇒ Pn ⇒  · · ·  ⇒  P3 ⇒ P2 ⇒ P1 ⇒ P. 

In this case you may be able to present the proofs of both implications at 
once, by writing 

P ⇔ P1 ⇔ P2 ⇔ P3 ⇔  · · ·  ⇔  Pn ⇔ Q. 

As with implications, this is particularly appropriate for proofs that 
depend mostly on algebraic manipulation. The next example gives a proof 
of this type showing that the implication in Example 3.6 and its converse 
are both true. 

Example 3.7 Prove that x(x − 2) = 3 if and only if x = −1 or  x = 3.  

Solution 

x(x − 2) = 3 ⇔ x 2 − 2x − 3 = 0  

⇔ (x + 1)(x − 3) = 0 

⇔ x + 1  =  0  or  x − 3 = 0  

⇔ x = −1 or  x = 3. 

It is conventional to write this to 
indicate that each of the 
statements P ⇒ P1, P1 ⇒ P2, 
. . . ,  Pn ⇒ Q is true. 

See Example 3.7.


Recall that the equivalence ‘P if

and only if Q’ asserts that both

the implication ‘P ⇒ Q’ (‘P

only if Q’) and its converse

‘Q ⇒ P ’ (‘P if Q’) are true.


Remember that the symbols ⇔

and ⇒ are used to link

statements, not  expressions. It  is 

meaningless to write, for

example,

x2 − 2x − 3 ⇔ (x + 1)(x − 3);

the correct symbol here is =.
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In Example 3.7 we solved the equation x(x − 2) = 3; we showed that its 
solution set is {−1, 3}. The forward (⇒) part of the proof shows that if x 
satisfies x(x − 2) = 3, then x = −1 or  x = 3; in other words, these are the 
only possible solutions of the equation. The backward (⇐) part shows that 
if x = −1 or  x = 3 then x satisfies x(x − 2) = 3; in other words, these two 
values actually are solutions of the equation. The symbol ⇔ is the one to 
use when solving equations or inequalities, and you must be sure that its 
use is valid at each step; in other words, that both implications hold. 

In this subsection we have discussed proof in the context of how to prove 
implications (and equivalences—but an equivalence is just two 
implications). However, what we have said extends to proofs of other types 
of statements. A statement Q that is not an implication can be proved by 
building up a sequence of statements leading to Q in the way that we have 
seen for an implication, except that there is no assumption P to be made 
at the start. Instead the first statement in the sequence must be one that 
we know to be true from our previous mathematical knowledge. 

3.4 Counter-examples 
Proving that an implication is true can be difficult. However, you may 
suspect that an implication is false, and it can often (but not always!) be 
easier to deal with this situation. To prove that an implication P ⇒ Q is 
false, you just have to give one example of a case where the statement P is 
true but the statement Q is false. Such an example is called a 
counter-example to the implication. Here are two examples. 

Example 3.8 Show that each of the following implications about integers 
is false, by giving counter-examples. 

(a)	 If n is prime, then 2n − 1 is prime. 

(b)	 If the product mn is a multiple of 4 then both m and n are multiples 
of 2. 

Solution 

(a)	 The number 11 is a counter-example, because 11 is prime but 
211 − 1 = 2047, which is not prime, since 2047 = 23 × 89. Hence the 
implication is false. 

(b)	 Taking m = 4  and  n = 1 provides a counter-example, because then 
mn = 4, which is a multiple of 4, but n is not a multiple of 2. Hence 
the implication is false. 

There is no general method for finding counter-examples. For some 
statements, such as the statement in part (b) of the above example, a little 
thought about the statement should suggest a suitable counter-example. 
For other statements, the quickest method may just be to try out different 
values for the variable (or variables) until you hit on a counter-example. 
For example, for the statement in part (a) of the above example, we can 
repeatedly choose a prime number n, calculate  2n − 1 and check whether it 
is prime. 

In order to carry out this procedure for Example 3.8(a), we need a method 
for checking whether a given number m is prime. We could simply check 
whether m is divisible by each of the integers between 2 and m − 1, 
inclusive, but this involves a large amount of calculation even for fairly 
small integers m. 

Section 3 The language of proof 

If you wanted to prove only that 
x = −1 and  x = 3 are solutions, 
and not that they are the only 
solutions, then although you 
could do so by giving the 
backward part of the above 
proof, it would be more natural 
to simply substitute each of 
these values in turn into the 
equation. 

For example, statement 4 on 
page 36 is not an implication 
(nor an equivalence). 

See the text below for how you 
might find this counter-example. 

Remember that just one 
counter-example is sufficient. 
For example, you can show that 
the statement 

2if x > 4 then  x >  2 
is false by considering the value 
x = −3. There is no need to 
show that every number x less 
than −2 is a counter-example, 
even though this is true. 
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We can significantly reduce the amount of calculation needed by using the 
following fact, which holds for any integer m ≥ 2: 

√
If m is not divisible by any of the primes less than or equal to m, 
then m is a prime number. 

You will be asked to prove this statement later in this section. Here is an 
example of its use. 

Example 3.9 Show that 127 is a prime number. √ 
Solution √ 127 = 11.3, to one decimal place, so the primes less than or If this procedure is applied to a 
equal to 127 are 2, 3, 5, 7 and 11. Dividing 127 by each of these in turn	 number that is not prime, then 

it will yield a prime factor. gives a non-integer answer in each case, so 127 is prime. 

Exercise 3.6 Give a counter-example to disprove each of the 
following implications. 

(a) If m + n is even, then both m and n are even. 

(b) If x <  2 then  (x2 − 2)2 < 4. 

(c) If n is a positive integer, then 4n + 1 is prime. 

As with implications, you may suspect that an equivalence is false. To 
prove that an equivalence P ⇔ Q is false, you have to show that at least 
one of the implications P ⇒ Q and Q ⇒ P is false, which you can do by 
providing a counter-example. 

3.5 Proof by induction 
Mathematical induction is a method of proof that is useful for proving 
many statements involving integers. Consider, for example, the statement 

1 + 3 +  · · · + (2n − 1) = n 2 for all positive integers n. 

Let us denote the statement 
21 + 3 +  · · · + (2n − 1) = n 

by P (n). It is easy to check that P (n) is true for small values of n; for  This type of notation, in which a 
example symbol denoting a statement is 

followed by a symbol denoting a 
1 = 12 ,	 variable, in brackets, is useful for 
1  +  3 = 4 = 22 ,	 a variable proposition (a 

statement that is true or false 1 + 3 + 5  =  9  =  32 , 
possibly depending on the value 

so certainly P (1), P (2) and P (3) are all true. But how can we prove that of a variable). 
P (n) is true for all positive integers n? 

The method of induction works like this. Suppose that we wish to prove 
that a statement P (n), such as the one above, is true for all positive 
integers n. Now suppose that we have proved that the following two 
statements are true. 

1. P (1) 
2. If P (k) is true, then so is P (k + 1), for k = 1, 2, . . ..  

Let us consider what we can deduce from this. Certainly P (1) is true,  
because that is statement 1. Also P (2) is true, because by statement 2, if 
P (1) is true, then so is P (2). Similarly, P (3) is true, since P (2) is. Since 
this process goes on for  ever,  we can  deduce that  P (n) is true for all 
positive integers n. We thus have the following method. 
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Principle of Mathematical Induction To prove that a statement 
P (n) is true for  n = 1, 2, . . .. 
1.	 Show that P (1) is true. 
2.	 Show that the implication P (k) ⇒ P (k + 1)  is  true 


for k = 1, 2, . . ..


Mathematical induction is often compared to pushing over a line of 
dominoes. Imagine a (possibly infinite!) line of dominoes set up in such a 
way that if any one domino falls then the next domino in line will fall 
too—this is analogous to step 2 above. Now imagine pushing over the first 
domino—this is analogous to step 1. The result is that all the dominoes 
fall! 

In the next example we apply mathematical induction to prove the 
statement mentioned at the beginning of this subsection. 

Example 3.10 Prove that 1 + 3 + · · · + (2n − 1) = n2, for  n = 1, 2, . . .. 
2Solution Let P (n) be the statement 1 + 3 + · · · + (2n − 1) = n .


Then P (1) is true, because 1 = 12 .


Now let k ≥ 1, and assume that P (k) is true; that is,


1 + 3 +  · · · + (2k − 1) = k2 . 

We wish to deduce that P (k +  1) is true;  that is,  

1 + 3 +  · · · + (2k + 1)  =  (k + 1)2 . 

Now 

1 + 3 +  · · · + (2k + 1)  =  (1  + 3 +  · · · + (2k − 1)) + (2k + 1)  

= k2 + (2k + 1)  (by  P (k)) 
= (k + 1)2 . 

Hence 

P (k) ⇒ P (k + 1), for k = 1, 2, . . . .  

Hence, by mathematical induction, P (n) is true,  for  n = 1, 2, . . . .  

Exercise 3.7 Prove each of the following statements by mathematical 
induction. 

1(a) 1 + 2 + · · · + n = 2 n(n + 1), for n = 1, 2, . . .. 
3	 1(b) 13 + 23 + · · · + n = 4 n

2(n + 1)2, for  n = 1, 2, . . .. 

In the next example, we need to be careful to carry out appropriate 
algebraic manipulation so that we can use P (k) to prove  P (k + 1).  

Example 3.11 Prove that 23n+1 + 5 is a multiple of 7, for n = 1, 2, . . .. 

Solution Let P (n) be the statement 

23n+1 + 5 is a multiple of 7. 

Then P (1) is true, because 23×1+1 + 5  =  24 + 5  =  21  =  3  × 7. 

... ... 

This statement also appeared in 
the list of statements at the 
beginning of Subsection 3.1. 

The final term on the left-hand 
side here is 
2(k + 1)  − 1 = 2k + 1.  
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Now let k ≥ 1, and assume that P (k) is true; that is, 

23k+1 + 5 is a multiple of 7. 

We wish to deduce that P (k +  1) is true;  that is,  

23(k+1)+1 + 5  =  23k+4 + 5 is a multiple of 7. 

Now 

23k+4 + 5  =  2323k+1 + 5  The first manipulation is 

= 8  × 23k+1 + 5  intended to create the 
sub-expression 23k+1 in the 

= 7  × 23k+1 + 23k+1 + 5. expression, so we can  use  P (k). 

The first term here is a multiple of 7, and 23k+1 + 5 is a multiple of 7, by 
P (k). Therefore 23k+4 + 5 is a multiple of 7. Hence 

P (k) ⇒ P (k + 1), for k = 1, 2, . . . .  

Hence, by mathematical induction, P (n) is true,  for  n = 1, 2, . . .. 

Mathematical induction can be adapted to deal with situations that differ 
a little from the standard one. For example, if a statement P (n) is  not  
true for n = 1 but we wish to prove that it is true for n = 2, 3, . . . ,  then we 
can do this by following the usual method, except that in step 1 we prove 
that P (2), rather than P (1), is true. (Also, in step 2 we have to show that This is analogous to pushing 
P (k) ⇒ P (k + 1)  for  k = 2, 3 . . . ,  rather than for k = 1, 2, . . . .) In the next over the second domino in the 

example we prove that a statement is true for n = 7, 8, . . . .  line: the result is that all the 
dominoes except the first fall! 

Example 3.12 Prove that 3n < n! for all n ≥ 7. 

Solution Let P (n) be the statement 3n < n!. 

Then P (7) is true, because 37 = 2187 < 5040 = 7!. P (n) is false for n = 1, 2, . . . , 6. 

Now let k ≥ 7, and assume that P (k) is true; that is, 

3k < k!. 

We wish to deduce that P (k +  1) is true;  that is,  

3k+1 < (k + 1)!. 

Now 

3k+1 = 3  × 3k 

< 3 × k! (by  P (k)) 
< (k + 1)k! (because k ≥ 7, and hence k + 1  ≥ 8 > 3) 
= (k + 1)!  . 

Hence P (k) ⇒ P (k + 1), for k = 7, 8, . .  . .  

Hence, by mathematical induction, P (n) is true,  for  n = 7, 8, . .  . .  

Exercise 3.8 Prove each of the following statements by mathematical

induction.


(a) 42n−3 + 1 is a multiple of 5, for n = 2, 3, . . . .  

(b) 5n < n! for all n ≥ 12. 

3.6 Proof by contradiction 
Sometimes a useful approach to proving a statement is to ask yourself, 
‘Well, what if the statement were false?’. Consider the following example. 
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Example 3.13 Prove that there is no positive real number a such that 
1 

a + 
a 

< 2. 

Solution Suppose that there is a positive real number a such that 

a + 
1 
a 

< 2. 

Then, since a is positive, we have 

1 
a 

a a + < 2a, 

which, on multiplying out and rearranging, gives 

a 2 − 2a + 1  < 0; that is, (a − 1)2 < 0. 

But this is impossible, since the square of every real number is greater 
than or equal to zero. Hence we can conclude that there is no such real 
number a. 

The above proof is an example of proof by contradiction. The idea is 
that if we wish to prove that a statement Q is true, then we begin by 
assuming that Q is false. We then attempt to deduce, using the method of 
a sequence of statements that you saw in Subsection 3.3, a statement that 
is definitely false, which in this context is called a contradiction. If  this  can  
be achieved, then since everything about our argument is valid except 
possibly the assumption that Q is false, and yet we have deduced a 
contradiction, we can conclude that the assumption is in fact false – in 
other words, Q is true. 

Here is a classic proof by contradiction, which was given by Euclid in This was a favourite proof of the 
about 300 bc. Cambridge mathematician 

G. H. Hardy (1877–1947), who 
Example 3.14 Prove that there are infinitely many prime numbers. described proof by contradiction 

as ‘one of a mathematician’s 
Solution Suppose that there are only finitely many primes, finest weapons’. 
p1, p2, . . . , pn. 

Consider the integer 

N = p1p2p3 · · · pn + 1. 

This integer is greater than each of the primes p1, p2, . . . , pn, so  it is  not  
prime. Therefore it has a prime factor, p, say. Now p cannot be any of the We are using the Fundamental 
primes p1, p2, . . . , pn, since dividing any one of these into N leaves the Theorem of Arithmetic to 

remainder 1. Thus, p is a prime other than p1, p2, . . . , pn. This  is  a  deduce that N has a prime 

contradiction, so our supposition must be false. It follows that there are factor. 

infinitely many primes. 

Exercise 3.9 Use proof by contradiction to prove each of the 
following statements. 

a and b with 1 
2 (a(a) There are no real numbers ab > 2 + b2). 

(b) There are no integers m and n with 5m + 15n = 357. 

To prove an implication P ⇒ Q using proof by contradiction, you should 
begin by assuming that P is true in the usual way. Then you should 
assume, hoping for a contradiction, that Q is false. If under these 
assumptions you can deduce a contradiction, then you can conclude that if 
P is true, then Q must also be true, which is the required implication. 
Here is an example. 
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Example 3.15 Prove that if n√ = a × b where n > 0, then at least one of 
a and b is less than or equal to n. 

Solution Suppose that n = a × b where n > 0. Suppose also that √ √ 
a >  n and b >  n. Then  

√ √ 
n = ab > ( n)( n) =  n; 

that is, n > n. This contradiction shows that the supposition that √ √ 
a >  n and b >  n must be false; that is, at least one of a and b is less √
than or equal to n. 

Exercise 3.10 Use proof by contradiction to prove that if n = a + 2b, 
where a and b are positive real numbers, then a ≥ 1

2n or b ≥
 14n. 

3.7 Proof by contraposition 
Given any implication, we can form another implication, called its 
contrapositive, which is equivalent to the original implication. The 
contrapositive of the implication ‘if P , then  Q’ is ‘if  not  Q, then  not  P ’, 
where ‘not P ’ and  ‘not  Q’ denote the negations of the statements P and 
Q, respectively. For example, the contrapositive of the implication Here is another example: the 

if x is an integer, then x 2 is an integer 
contrapositive of the implication 

if Rosie is a sheep, then Rosie 

is the implication is less than two metres tall 
is 

if x 2 is  not an integer, then  x is  not an integer.  if Rosie is not less than two 
metres tall, then Rosie is not 

You can think of an implication and its contrapositive as asserting the a sheep 
same thing, but in different ways. You should take a few moments to or, more simply, 
convince yourself of this in the case of the implication and its if Rosie’s height is two metres 
contrapositive given above. Try this also with the non-mathematical or more, then Rosie is 
example in the margin! not a sheep. 

Since an implication and its contrapositive are equivalent, if you have 
proved one, then you have proved the other. Sometimes the easiest way to 
prove an implication is to prove its contrapositive instead. This is called 
proof by contraposition. Here is an example. The proof makes use of the 
fact that 

x n − 1 = (x − 1)(x n−1 + x n−2 + · · · + x + 1), (3.1) 

for any real number x and any positive integer n. This can be verified by 
multiplying out the right-hand side. (Try it!) 

Example 3.16 Prove the following implication about positive integers n: 

if 2n − 1 is prime, then n is prime. 

Solution We shall prove the contrapositive of the implication, which is 

if n is not prime, then 2n − 1 is  not  prime.  

Suppose that n is a positive integer that is not prime. If n = 1,  then  
2n − 1 = 2  − 1 = 1, which is not prime. Otherwise n = ab, where  In this proof we consider two 
1 < a, b < n. Hence cases separately: the cases n = 1  

and n > 1. Splitting into cases is 
2n − 1 = 2ab − 1 sometimes an effective way to 

= (2a)b − 1 proceed in a proof. 

= (2a − 1)((2a)b−1 + · · · + 2a + 1), 
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where the last line follows from equation (3.1). Now 2a − 1 > 1, since 
a > 1, and similarly (2a)b−1 + · · · + 2a + 1  > 1, since both a and b are 
greater than 1. Hence 2n − 1 is not prime. We have thus proved the 
required contrapositive implication in both the cases n = 1  and  n > 1. 
Hence the original implication is also true. 

Exercise 3.11 Use proof by contraposition to prove each of the 
following statements about integers m and n. 

(a) If n3 is even, then n is even. 

(b) If mn is odd, then both m and n are odd. 

(c) If an integer √n > 1 is not divisible by any of the primes less than 
or equal to n, then  n is a prime number. 

Hint: Use the result of Example 3.15, on page 48. 

3.8 Universal and existential statements 
Many mathematical statements include the phrase ‘for all’, or another 
form of words with the same meaning. Here are a few examples. 

x2 ≥ 0 for all real numbers x. 
Every multiple of 6 is divisible by 3. 
1 + 3 + 5 +  · · · + (2n − 1) = n2 for each positive integer n. 
Any rational number is a real number. 

Statements of this type are known as universal statements, and the phrase 
‘for all’, and its equivalents, are referred to as the universal quantifier. 

Statements  that  begin  with  a  phrase  like  ‘There  are  no  . . . ’ or  ‘There  
does not exist . . .’ are universal statements, because they can be 
rephrased in terms of ‘For all’. For example, the statement 

there is no integer n such that n 2 = 3  

can be rephrased as 
2for all integers n, n �= 3.  

Other mathematical statements may include the phrase ‘there exists’, or 
another form of words with the same meaning. Here are a few examples. 

There exists a real number that is not a rational number. 
There is a real  number  x such that cos x = x. 
Some multiples of 3 are not divisible by 6. 
The equation x3 + x2 + 5  =  0  has  at least one real solution. 

Statements of this type are known as existential statements, and the phrase 
‘there exists’ and its equivalents are referred to as the existential quantifier. 

In natural language, the word ‘any’ may mean either ‘every’ or ‘at least 
one’, as in ‘any fool could do that’ and ‘did you prove any theorems?’. In 
mathematics, the meaning depends on the context in a similar way. We try 
to avoid using ‘any’ where it might cause confusion. 

We saw earlier in this section that it is often necessary to negate 
statements, for example when we wish to use proof by contradiction or 
proof by contraposition. 

Section 3 The language of proof 

We put x = 2a and n = b in 
equation (3.1). 

We used this result in 
Subsection 3.4. 

The universal quantifier is 
sometimes denoted by the 
symbol ∀; for example, the first 
universal statement above might 
be abbreviated as 

∀x ∈ R, x 2 ≥ 0, 
which is read as ‘for all x in R, x 
squared is greater than or equal 
to zero’. 

In mathematics, the word some 
is used to mean ‘at least one’, 
rather than ‘several’. 

The existential quantifier is 
sometimes denoted by the 
symbol ∃; for example, the 
second existential statement 
above might be abbreviated as 

∃x ∈ R such that cos x = x, 
which is read as ‘there exists x 
in R such that cos x equals x’. 
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The negation of universal and existential statements needs to be treated 
with particular care. The negation of a universal statement is an 
existential statement, and vice versa. This is illustrated by the examples in 
the table below. You saw further examples in Example 3.1(a), and 
Exercises 3.1(c) and (d). 

Statement Negation 

Every integer is a real number. There exists an integer that 
is not a real number. 

There is an even prime number. Every prime number is odd. 
The equation x2 + 4  =  0  has  a  The equation x2 + 4  =  0  has  
real solution. no real solutions. 

You may  have  found some  of  the  ideas in  this section difficult  to  get used  
to—this is to be expected, since reading and understanding mathematics, 
and writing mathematics clearly and accurately, can both be difficult at 
first. Your skills will improve as you gain experience. To accelerate this 
improvement, you should, when reading mathematics, try to make sure 
that you gain a clear understanding of exactly what each statement 
asserts. When writing mathematics, you should try to be as clear and 
accurate as you can. Include enough detail to make the argument clear, 
but omit any statements that are not necessary to reach the required 
conclusion. A good check is to read over your work and ask yourself 
whether you would be able to follow what you have written in six months’ 
time, when you have forgotten the thoughts and rough work that led to it. 
Use the solutions to the examples and exercises in the course as models for 
good mathematical writing. 

Further exercises 
Exercise 3.12 Which of the following statements have the same meaning? 

(a) If n is even, then n2 is a multiple of 4. 

(b) n is even only if n2 is a multiple of 4. 

(c) n2 is a multiple of 4 whenever n is even. 

(d) x > 0 ⇒ x2 + 4x > 0. 

(e) x > 0 is necessary for x2 + 4x > 0. 

(f ) x > 0 is sufficient for x2 + 4x > 0. 

Exercise 3.13 Determine whether the numbers 221 and 223 are prime. 

Exercise 3.14 Prove, or give a counter-example to disprove, each of the 
following statements. 

(a) If n is a positive integer, then n3 − n is even. 

(b) If m + n is a multiple of k, then  m and n are multiples of k. 

(c) If θ is a real number, then sin 2θ = 2  sin  θ. 

(d) The following function is one-one: 

f : R −→ R


x �
−→ 3x 2 − 6x + 1. 

You may find it helpful to 
re-visit parts of Section 3 later 
in your study of the course. 
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(e) The function g is the inverse of the function f , where  f and g are 
given by 

f : R − {1}−→  R − {0} g : R − {0}−→  R − {1}

1 and 1


x � −→ 1 +  .−→ 
x − 1 x �

x 

Exercise 3.15 

(a) Write down the converse of the following statement. 

If m and n are both even integers, then m − n is an even integer. 

(b) Determine whether the original statement and the converse are true, 
and give a proof or counter-example, as appropriate. 

Exercise 3.16 Prove each of the following statements by mathematical 
induction. 

1 1 1 n − 1
(a) + + · · · + = for n = 2, 3, . . . .

1 × 2 2 × 3 (n − 1)n n 

(b) The integer 32n − 1 is divisible by 8 for n = 1, 2, . . . . 

Exercise 3.17 Prove by contradiction that (a + b)2 ≥ 4ab for all real 
numbers a and b. 

Exercise 3.18 

(a) Write down the contrapositive of the following statement, for positive 
integers n.


If n2 is divisible by 3, then n is divisible by 3.


(b) Prove that the contrapositive is true, and hence that the original 
statement is true. 

Exercise 3.19 Determine which of the following statements are true, and 
give a proof or counter-example as appropriate. 

(a) For all x, y ∈ R, x < y  ⇒ x2 < y2 . 

(b) For all x ∈ R, x2 − x = 2.  

(c) There exists x ∈ R such that x2 − x = 2.  

(d) There exists x ∈ R such that x2 − x = −1. 

(e) There are no real numbers x, y for which x/y and y/x are both 
integers. 

(f) For all positive integers n, 
212 + 22 + 32 + · · · + n = 1 n(n + 1)(2n + 1).6 

(g) For all positive integers n ≥ 2, 

1 1 1 1
1 − 1 − · · ·  1 − = .

2 3 n 2n 
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