
( ) ( ) ( ) ( ) 

Unit I2 Mathematical language 

4 Two identities 

After working through this section, you should be able to: 

(a) understand and use the Binomial Theorem; 
(b) understand and use the Geometric Series Identity; 
(c) understand and use the Polynomial Factorisation Theorem. 

An identity is an equation involving variables which is true for all possible 
values of the variables. You will already be familiar with many basic 
identities, such as 

(a + b)2 = a 2 + 2ab + b2 and a 2 − b2 = (a − b)(a + b).	 Some texts use the symbol ≡ to 
denote an identity, but we shall 

These identities are particular cases of more general identities that we shall not do so. 
use extensively later in the course. In this section we state and prove these 
key identities, using some of the techniques described earlier in the unit. 

4.1 The Binomial Theorem 
A striking mathematical pattern appears when we expand expressions of 
the form (a + b)n for n = 1, 2, . . .: 

(a + b)1 = a1 + b1 , 
(a + b)2 = a2 + 2ab + b2 , 
(a + b)3 = (a + b)(a2 + 2ab + b2) =  a3 + 3a2b + 3ab2 + b3 , 
(a + b)4 = (a + b)(a3 + 3a2b + 3ab2 + b3) =  a4 + 4a3b + 6a2b2 + 4ab3 + b4 , 

and so on. The coefficients that appear in these expansions can be 
arranged as a triangular table, in which 1s appear on the left and right 
edges, and the remaining entries can be generated by using the rule that 
each inner entry is the sum of the two nearest entries in the row above. For example, 10 = 4 + 6. 

(a + b)0 1 The 1 at the top corresponds to 
(a + b)1 1 1 n = 0:  

(a + b)2 1 2 1 (a + b)0 = 1. 

(a + b)3 1 3 3 1 
(a + b)4 1 4 6 4 1 
(a + b)5 1  5  10  10  5  1  

.	 . .	 . .	 . 

This table is known as Pascal’s triangle, after the French mathematician, 
physicist and theologian Blaise Pascal (1623–1662), although it appeared 
several hundred years earlier in a book by the Chinese mathematician Chu 
Shih-Chieh. 

We can calculate any coefficient in Pascal’s triangle directly, instead of 
from two coefficients in the row above, because the coefficients in the row 
corresponding to (a + b)n are given by 

n n n 
, , . . . ,  , where 

n = 
n! 

.	 For example, the fourth 0 1 n k k! (n − k)! coefficient in the row ( ) corresponding to (a + b)5 is 
The expression 

n was introduced in Subsection 1.5, where we saw that given by 
k ( ) 

it gives the number of different k-element subsets of an n-element set. 5 = 
5! 

= 10.3 3! 2! 
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Section 4 Two identities 

Example 1.5 shows why the numbers n satisfy the rule described above 
k 

for generating Pascal’s triangle.


Here is the general formula for the expansion of (a + b)n . It is our first key

identity. 

Theorem 4.1 Binomial Theorem 

Let a, b ∈ R and let n be a positive integer. Then 

n n 
bn 

0 k n
(a + b)n = 

n
an + 1 

an−1b + · · ·+ 
n

an−k bk + · · ·+ . 

Proof The shortest way of proving this result is to note that (a + b)n is 
the product of n brackets: 

(a + b)n = (a + b) × (a + b) × · · · × (a + b). 

When this product is multiplied out, we find that each term of the form 

Note that 
n n = 0 n = 1, 

since 0! = 1. 

an−kbk arises by choosing the variable a from n − k of the brackets and the 
variable b from the remaining k brackets. Thus the coefficient of an−k bk is 
equal to the number of ways of choosing a subset of n − k brackets (or, 
equivalently, a subset of k brackets) from the set of n brackets, and this is 

precisely 
n , as required. 
k 

Note the following important special case of Theorem 4.1, obtained by 
taking a = 1  and  b = x: 

n n n(1 + x)n = 
n + 1 

x + · · · + x k + · · · + 
n

x0 k n 

n(n − 1) n= 1  +  nx + x 2 + · · · + x .
2! 

Example 4.1 Expand (2 + 3x)5 . 

Solution Using the Binomial Theorem with n = 5,  a = 2  and  b = 3x, we  
obtain 

5 5(2 + 3x)5 = 0 25 + 5 24(3x) +  23(3x)2 
1 2 

5 5+ 3 22(3x)3 + 4 
2(3x)4 + 

5 (3x)5 
5 

= 25 + 5  × 24(3x) + 10  × 23(3x)2 

+ 10  × 22(3x)3 + 5  × 2(3x)4 + (3x)5 

5= 32 + 240x + 720x 2 + 1080x 3 + 810x 4 + 243x . 

Exercise 4.1 Find the coefficient of: 

(a) a5b4 in the expansion of (a + b)9; 

(b) x4 in the expansion of (1 + 2x)5 . 
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Unit I2 Mathematical language 

Many identities can be obtained as special cases of the Binomial Theorem 
by choosing particular values for the variables a and b. 

Example 4.2 Deduce from the Binomial Theorem that 

2n n n n n = + + · · · + + · · · + , for n ≥ 1.0 1 k n 

Solution Taking a = 1  and  b = 1 in the statement of the Binomial 
Theorem, we obtain (1 + 1)n = 2n on the left-hand side, whereas all the 
powers of a and b on the right-hand side are equal to 1. This gives the 
required identity. 

In Subsection 1.5 we proved that a set with n elements has 2n subsets. 
The identity in Example 4.2 provides an alternative proof of this fact. 

Since 
n gives the number of k-element subsets of a set with n elements, 
k 

the sum 

n n n n+ + · · · + + · · · +0 1 k n 

gives the total number of subsets (of all sizes) of a set with n elements. By 
the identity in Example 4.2, this sum is equal to 2n . 

Exercise 4.2 

(a) Use the Binomial Theorem to obtain an expansion for (a − b)n . 

(b) Write down the identity you obtain by taking a = 1  and  b = 1  in  
part (a), and check that this identity is true for n = 4.  

It is a remarkable fact that there is a version of the Binomial Theorem 
which holds when n is a real number, rather than just a positive integer. 
This general version, which involves an infinite series, was used by Isaac 
Newton, but a correct proof was not given until the early 19th century by 
the Norwegian mathematician Niels Abel. 

4.2 The Geometric Series Identity 
Expressions of the form an − bn occur often in mathematics,  and we can  
factorise them in the following simple manner: 

a 2 − b2 = (a − b)(a + b), 
a 3 − b3 = (a − b)(a 2 + ab + b2), 
a 4 − b4 = (a − b)(a 3 + a 2b + ab2 + b3), 

and so on. The following general result can be proved by multiplying out 
the expression on the right-hand side. 

Theorem 4.2 Geometric Series Identity 

Let a, b ∈ R and let n be a positive integer. Then 

a n − bn = (a − b)(a n−1 + a n−2b + · · · + abn−2 + bn−1). 

A proof of this infinite version is 
given later in the course. 
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Exercise 4.3 

(a) Write down the Geometric Series Identity in full for the case 
n = 5.  

(b) Use the Geometric Series Identity to show that 

a n + bn = (a + b)(a n−1 − a n−2b + · · · − abn−2 + bn−1), 

where a, b ∈ R and n is an odd positive integer. Write down this 
identity in full for the case n = 5.  

Theorem 4.2 has some useful consequences. In particular, it includes as a 
special case the following formula for the sum of a finite geometric series 
with initial term a, common ratio r, and  n terms. 

Corollary Sum of a finite geometric series 

Let a, r ∈ R and let n be a positive integer. Then ⎧ ( ) 
n1 − r

= 1, 
a + ar + ar 2 + · · · + ar n−1 = 

⎨ 
a 

1 − r
, if r �⎩ 

na, if r = 1. 

Proof For the case r �= 1, we need to show that 
n1 − rn−1 = ;1 +  r + r 2 + · · · + r 

1 − r 

that is, 

1 − r n = (1  − r)(1 + r + r 2 + · · · + r n−1). 

But this follows from the statement of Theorem 4.2 with a = 1  and  b = r. 

When r = 1, the required identity is evident, since the left-hand side then 
consists of n terms all equal to a. 

Exercise 4.4 Find the sum of the following finite geometric series: 

1 + 1/2 + 1/4 +  · · · + 1/2n−1 . 

Theorem 4.2 can also be used to give a short proof of a useful result which 
helps us to factorise polynomials. 

Theorem 4.3 Polynomial Factorisation Theorem 

Let p(x) be a polynomial of degree n, and  let  α ∈ R. Then  p(α) = 0  if  
and only if 

p(x) = (x − α)q(x), (4.1) 

where q is a polynomial of degree n − 1. 

Proof First, we prove the ‘if’ part.


If equation (4.1) holds, then p(α) = (α − α)q(α) =  0. 


Section 4 Two identities 

This explains the name of 
Theorem 4.2. 

Recall that a corollary is a 
consequence of a theorem, 
proved by a short additional 
argument. 

A polynomial in x of degree n is 
an expression of the form 

anx n + an−1x n−1 + · · ·  
+ a1x + a0, 

where an �= 0.  

Here we prove an equivalence by 
proving separately the two 
implications that it comprises. 
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Next, we prove the ‘only if’ part. 

Suppose that p(α) = 0. Let p(x) =  anxn + an−1x
n−1 + · · · + a1x + a0, 

where an �= 0.  Since  p(α) =  0,  

p(x) =  p(x) − p(α) 
= (anx n + an−1x n−1 + · · · + a1x + a0) 

− (anαn + an−1α
n−1 + · · · + a1α + a0) 

= an(x n − αn) +  an−1(x n−1 − αn−1) +  · · · + a1(x − α), 

since the constant terms a0 cancel. Now, by Theorem 4.2, each of the 
bracketed expressions in this last expression has factor x − α, so  p(x) is  the  
product of x − α and a polynomial of the form 

q(x) =  anx n−1 + · · · , 
which has degree n − 1. 

Although the proof of Theorem 4.3 could be used to find the polynomial 
q(x), it is usually easier to find this polynomial by comparing coefficients, 
once we know that x − α is a factor. 

Example 4.3 Show that x − 2 is a factor of the cubic polynomial 

p(x) =  x 3 + x 2 − x − 10, 

and find the corresponding factorisation of p(x). 

Solution First, we evaluate p(2): 

p(2) = 23 + 22 − 2 − 10 = 8 + 4 − 2 − 10 = 0. 

Therefore, by the Polynomial Factorisation Theorem, p(x) has the factor 
x − 2. By comparing the coefficients of x3, and by comparing the constant 
terms, we obtain 

x 3 + x 2 − x − 10 = (x − 2)(x 2 + cx + 5), for some number c. We obtain this by noting that 

The coefficient of x2 is 1 on the left-hand side, and −2 +  c on the 
right-hand side, so c = 3,  which  gives  

the coefficient of x2 in the 
quadratic expression on the 
right-hand side must be 1 in 

x 3 + x 2 − x − 10 = (x − 2)(x 2 + 3x + 5). order to give 1 as the coefficient 
of x3 on the left-hand side. 
Similarly, the constant term in 

Exercise 4.5 For what value of c is x +  3 a factor of  the quadratic expression must 

p(x) =  x 3 + cx 2 + 6x + 36  ?  
be 5 to give the constant term 
−10 on the left-hand side. 

The following result about polynomial factorisation can be proved by 
applying the Polynomial Factorisation Theorem repeatedly, although we 
omit the details here. We have taken the coefficient of the highest power of 
x to be 1, for simplicity. The roots of a polynomial p(x) are the solutions The roots of a polynomial are 
of the equation p(x) = 0.  also known as its zeros. 

Corollary Let p(x) =  xn + an−1x
n−1 + · · · + a1x + a0, and suppose 

that p(x) has  n distinct real roots, α1, α2, . . . , αn. Then  

p(x) = (x − α1)(x − α2) · · · (x − αn). (4.2) 
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In  fact, as you  will  see in Unit  I3,  every polynomial of the form 

p(x) =  x n + an−1x n−1 + · · · + a1x + a0 

has a factorisation of the form (4.2), although the roots α1, α2, . . . , αn need 
not be distinct and may include non-real complex numbers. (Complex 
numbers are introduced in Unit I3.) It follows that a polynomial of

degree n has at most  n distinct roots.


Two useful consequences of this factorisation of p(x) are 


an−1 = −(α1 + α2 + · · · + αn) (4.3) 

and 

a0 = (−1)nα1α2 · · ·αn. (4.4) 
n−1We obtain the first of these equations by comparing the coefficients of x

on the two sides of the equation 

x n + an−1x n−1 + · · · + a1x + a0 = (x − α1)(x − α2) · · · (x − αn). (4.5) 

When the expression on the right-hand side of equation (4.5) is multiplied 
out, each term in xn−1 arises by choosing the variable x from n − 1 of the  
brackets, and the constant term from the remaining bracket. Choosing the 
constant term from the first bracket gives −α1x

n−1, choosing the constant 
term from the second bracket gives −α2x

n−1, and so on. Adding all these 
terms and comparing the resulting total coefficient with the coefficient of 
xn−1 on the left-hand side of equation (4.5) gives equation (4.3). 
Equation (4.4) is obtained by comparing the coefficients of x0 on each side 
of equation (4.5). 

Equations (4.3) and (4.4) relate the sum and product of the roots of the 
polynomial p(x) to two of its coefficients, and they provide a useful check 
on the values of the roots found. Equation (4.4) is useful if you suspect 
that a polynomial of the form p(x) =  xn + an−1x

n−1 + · · · + a1x + a0 has n 
roots all of which are are integers; if they are, then each of the roots must 
be a factor of the constant coefficient a0. 

Example 4.4 Solve the following equation, given that all the solutions are 
integers. 

p(x) =  x 3 − 6x 2 − 9x + 14  =  0. 

Solution Since all the roots of p(x) are integers, the only possible roots 
are the factors of 14, that is, ±1, ±2, ±7, ±14. Considering these in turn, 
we obtain the following table. 

x 1 −1 2 −2 7 −7  14  −14 

p(x) 0 16  −20 0 0 −560 1456 −3780 

The only solutions are x = 1,  x = −2 and  x = 7.  So,  

x 3 − 6x 2 − 9x + 14  =  (x − 1)(x + 2)(x − 7). 

Exercise 4.6 

(a) Solve each of the following equations, given that all their solutions 
are integers. 

(i) p(x) =  x3 − 3x2 + 4  =  0  
(ii) p(x) =  x3 − 9x2 + 23x − 15 = 0 

(b) Determine a polynomial equation whose solutions are 1, 2, 3,−3. 

Section 4 Two identities 

For example, 
x 4 − 6x 3 + 9x 2 + 4x − 12 

= (x − 2)(x − 2)(x − 3)(x + 1). 

In the above polynomial, the 
coefficient of x3 is 

−6 =  −(2 + 2 + 3 − 1), 
and the constant term is 

−12 = (−1)4 × 2 × 2 × 3 × (−1). 

For a cubic equation, once we 
have found three roots, we do 
not need to complete the rest of 
the table, so we could have 
omitted the last three columns 
here. 
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Further exercises 
Exercise 4.7 Determine the expansions of the following expressions. 

(a) (a + 3b)4 

(b) (1 − t)7 

Exercise 4.8 Find the coefficients of the following. 

(a) a3b7 in the expansion of (a + b)10 

(b) x13 in the expansion of (2 + x)15 

Exercise 4.9 Find the sum of each of the following finite geometric series. 
1 1 1

(a) 3 − 1 +  
310

− + · · · −  
3 9 

2 na a a
(b) 1 + + + · · · + = b and b �, where  a, b ∈ R, a � = 0  

b b2 bn 

Exercise 4.10 

(a) Show that 2x3 + x2 − 13x + 6  has  a  factor  x − 2, and hence factorise 
this polynomial. 

(b) Solve the equation x3 + 6x2 + 3x − 10 = 0. 

(c) Find the solutions for x in terms of y of the equation 

x 2 + x = y 2 + y. 

Exercise 4.11 

(a) Find a cubic polynomial for which the sum of the roots is 0, the 
product of the roots is −30, and one root is 3. 

(b) Find the other two roots of the polynomial found in part (a). 
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