
Solutions to the exercises 

Solutions to the exercises 

1.1 (a) True: −2 is an integer. 

(b) False: 5 is a natural number. 

(c) False: 1.3 is the rational number 13 .10 

1(d) False: is not a natural number. 2 

(e) True: −π is  a real number.  
2 
1 ).(f ) True: 2 is a rational number ( 

1.2 (a) True: 1 is a member of the set given. 

(b) True: the set {−9} is a member of the set given. 

(c) False: the number 9 belongs to the set given, 
but the set {9} does not. 

(d) False: (0, 1) is not a member of the set given. 

(e) True: the set {0, 1} is a member of the set given. 

1.3 (a) {k ∈ Z : −2 < k  <  1000} 

(b) {x ∈ R : 2  ≤ x ≤ 7} 
2(c) {x ∈ Q : x >  0 and  x > 2} 

(d) {2n : n ∈ N} 

(e) {2k : k ∈ Z} 

1.4 (a) l = {(x, y) ∈ R2 : y = 2x + 5} 

(b) 

1.5 (a) C = {(x, y) ∈ R2 : (x − 1)2 + (y + 4)2 = 9} 

(b) 

1.6 (a) 

(b) 

(c) 

(d) 

1.7 (a) {(x, y) ∈ R2 : 0  ≤ x ≤ 2, 1 ≤ y ≤ 3} 

(b) {(x, y) ∈ R2 : x ≥ 0, y  = 2x2 + 1} 

1.8 (a) The set B consists of the solutions of the 
equation 

x 2 + x − 6 =  0, 
which we can write as 

(x − 2)(x + 3)  =  0. 
So B = {2,−3} = A. 

(b)	 A = {k ∈ Z : k is odd and 2 < k  <  10}
= {3, 5, 7, 9}, 

B = {n ∈ N : n is a prime number and n <  10}
= {2, 3, 5, 7}. 

Hence A � ∈ A, or  = B, either because 2 ∈ B but 2 /
because 9 ∈ A but 9 /∈ B. 

1.9 (a) We calculate x − 4y using the coordinates 
of each point of A: 

5 − 4 × 2 =  −3, 
1 − 4 × 1 =  −3, 
−3 − 4 × 0 =  −3. 

This shows that each element of A is an element of 
B, so  A ⊆ B. 
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(b) The set A is the interior of the unit circle, and 
B is the half-plane consisting of all points with 
negative y-coordinate. So A � B, because, for 

1 
2 ,example, the point ( 1 

2 A B.) belongs to but not to 

1.10 We showed that A ⊆ B in the solution to 
Exercise 1.9(a). Also, for example, the point (9, 3) 
lies in B, since  

9 − 4 × 3 =  −3, 
but does not lie in A. Therefore A is a proper subset 
of B. 

1.11 First we show that A ⊆ B.

Let (x, y) ∈ A; then  x = t2 and y = 2t, for some

t ∈ R. Hence y2 = 4t2 = 4x. So  (x, y) ∈ B, and  so 

A ⊆ B.

Next we show that B ⊆ A.

Let (x, y) ∈ B. We must show that (x, y) ∈ A. Let 


t = 12 y x; then  = 14 y
2 = 1

2 y 
)2 = t2, and  y = 2t. So  

(x, y) = (t2 , 2t) ∈ A, and  so  B ⊆ A.

Since A ⊆ B and B ⊆ A, it follows that A = B.


1.12 

k	 Subsets of {1, 2, 3, 4} of size k 

0 ∅

1 {1}, {2}, {3}, {4}

2 {1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}

3 {1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}

4 {1, 2, 3, 4}


The table shows that the set {1, 2, 3, 4} has 
1 + 4 + 6 + 4 + 1 = 16 subsets in all. 

10! 10 × 91.13 10 = = = 5  × 9 =  45,2 2! 8! 2 

10 10! 10 × 9 × 8 
= = = 10  × 3 × 4 = 120,3 3! 7! 3 × 2 

11 11! 11 × 10 × 9 
= = = 11  × 5 × 3 = 165. 3 3! 8! 3 × 2 

10 10 11Hence 2 + 3 = 3 . 

1.14 (a) n =
(n − 

n

k

!
)! k! 

and 
n − k 

n n! n n = 
k! (n − k)!

, so  = . 
k	 n − k k 

(b) We can interpret the identity as follows. 
n is the number of ways of choosing k elements 
k 

from n, which is the same as n , the  number  
n − k 

of ways of excluding k elements from n. 

60 

1.15 (a) (1, 7) ∪ [4, 11] = (1, 11]. 

(b)	 The domain of f is the set 

{x ∈ R : x 2 − 9 > 0} = {x ∈ R : x <  −3 or  x >  3}, 
that is, 

(−∞,−3) ∪ (3,∞). 

(c) 

1.16 (a) (1, 7) ∩ [4, 11] = [4, 7). 

(b) 

1.17 (a) (1, 7) − [4, 11] = (1, 4) and 
[4, 11] − (1, 7) = [7, 11]. 

(b) 

1.18 (a) False: 0 is not a natural number. 

(b) True: 0 is a rational number. 

(c) False: −0.6 is a real number. 

(d) True: 37 is an integer. 

(e) False: 20 is not a member of the set given. 

(f ) True: the set {1, 2} is the same as the set {2, 1}. 
(g) False: ∅ does not contain any elements. 

1.19 (a) The elements are 3, 4, 5, 6. Note that 2 
and 7 are not included. 

(b) The elements are −1,−4. These are the 
solutions of the equation. 

(c) The only element is 5. The equation has two 
solutions, −5 and 5, but only 5 ∈ N. 



Solutions to the exercises 

1.20 In each case, you may have found a different 
expression for the same set. 

(a) {k ∈ Z : −20 < k  <  −3} 

(b) {3k : k ∈ Z, k  �= 0} 

(c) {x ∈ R : x >  15} 

1.21 (a) 

(b) 

(b) 

The circle is not part of the set. 

(c) 

The edges of the square belong to the set. 

1.23 (a) (0, 0), (0, 6) and (−4, 6) all satisfy the 
equation (x + 2)2 + (y − 3)2 = 13, so A ⊆ B. 

(b) The point (1, 0) belongs to A but not to B, so  
A is not a subset of B. 

2 

+ 
y2x

(c) If x = 2  cos  t and y = 3  sin  t, then  = 1,  
4 9 

(c) so A ⊆ B. 

1.24 We must first show that A ⊆ B. Let  (x, y) be  
an arbitrary element of A; then  x2 + 4y2 < 1. Since 
x2 ≥ 0 for all x ∈ R, this implies that 4y2 < 1, and 

1hence y < 4 
2 1 . Hence y <  

To confirm that A is a proper subset of B, we must  
2 ) ∈ B.. Thus  (x, y

show that there is an element of B that does not lie 
in A. The point (1,−1), for example, lies in B, since  

1−1 < , but does not lie in A, since  2


12 + 4(−1)2 = 5,

which is not less than 1. Therefore A is a proper 
subset of B. 

1.22 (a) 

The line is not part of the set.


1.25 (a) 1, −1, 2 are the three solutions of 
x3 − 2x2 − x + 2  =  0,  so  A = B. 

(b) We showed in the solution to Exercise 1.23(c) 
that A ⊆ B. 

2 

+ 
y2x

If = 1,  then  (x/2, y/3) lies on the unit circle, 
4 9 

so we can find t ∈ [0, 2π] such that x/2 = cos  t and 
y/3 =  sin  t. Hence x = 2  cos  t and y = 3  sin  t, so  
B ⊆ A. 
Since A ⊆ B and B ⊆ A, it follows that A = B. 

(c)	 The set B contains some negative numbers 
for− p

(for example, 1) which cannot be expressed as 
q 

p, q ∈ N. Hence A �= B. 
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1.26 (a) A ∪ B = {0, 2, 4, 5, 6},

A ∩ B = {4},

A − B = {0, 2}.

(b) A ∪ B = (−5, 17],

A ∩ B = [2, 3],

A − B = (−5, 2).


(c) A ∪ B = B,

A ∩ B = A,

A − B = ∅.


2.1 (a) This is a translation of the plane that 
moves each point to the right by 2 units and up by 
3 units. 

(b) This is a reflection of the plane in the x-axis. 

(c) This is a rotation of the plane through π/2 
anticlockwise about the origin. 

2.2 Only diagram (b) corresponds to a function. 
Diagram (a) does not correspond to a function, as

there is no arrow from the element 3.

Diagram (c) does not correspond to a function, as

there are two arrows from the element 1. 

2.3	 The images of the elements of A are 
f(0) = 9, f(1) = 8, f(2) = 7, f(3) = 6, f(4) = 5, 
f(5) = 4, f(6) = 3, f(7) = 2, f(8) = 1, f(9) = 0. 

So the image of f is {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} = A. 

2.4 Only diagram (a) corresponds to an onto 
function.

Diagram (b) does not even correspond to a function,

as there is no arrow from the element 4.

Diagram (c) corresponds to a function that is not 
onto, as there is no arrow going to the element 1. 

2.5 (a) The sketch of the graph of f below 
suggests that f(R) = [1,∞). 

Let x ∈ R; then  f(x) = 1  +  x2. Since  x2 ≥ 0, we have

1 +  x2 ≥ 1 and  so  f(R) ⊆ [1,∞).

We must show that f(R) ⊇ [1,∞).

Let y ∈ [1,∞). We must show that there exists x ∈ R


2such that f(x) =  y; that is,  1  +  x = y. 

√
Now x = y − 1 is  real,  since  y ≥ 1, and satisfies √ 
f(x) =  y, as required. (Alternatively, x = − y − 1 is  
real and satisfies f(x) =  y.) 
Thus f(R) ⊇ [1,∞). 
Since f(R) ⊆ [1,∞) and  f(R) ⊇ [1,∞), it follows 
that f(R) = [1,∞), so the image of f is [1,∞), as 
expected. 
The interval [1,∞) is not the whole of the codomain 
R, so  f is not onto. 

(b) This function is a reflection of the plane in the 
x-axis. This suggests that f(R2) =  R2. We  know  

that f(R2) ⊆ R2, so we must show that f(R2) ⊇ R2 . 
Let (x , y′) ∈ R2 . We must show that there exists 
(x, y) ∈ R2 such that f(x, y) =  (x , y′); that is, 

x = x, y = −y. 

Rearranging these equations, we obtain 

x = x , y  = −y ′ . 
Let (x, y) = (x ,−y′); then (x, y) ∈ R2 and 
f(x, y) = (x , y′), as required. 
Thus f(R2) ⊇ R2 . 
Since f(R2) ⊆ R2 and f(R2) ⊇ R2, it follows that 
f(R2) =  R2, so the image of f is R2, as expected. 
The codomain of f is also R2, so  f is onto. 

2.6 Only diagram (c) corresponds to a one-one 
function. 
Diagram (a) corresponds to a function that is not 
one-one, as there are two arrows going to the 
element 3. 
Diagram (b) does not even correspond to a function, 
as there is no arrow from the element 2. 

2.7 (a) This function is not one-one since, for 
example, 

f(2) = f(−2)  = 1  +  4  = 5. 

(b) This function is a reflection of the plane in the 
x-axis, so we expect it to be one-one. We now prove 
this algebraically. 
Suppose that f(x1, y1) =  f(x2, y2); then 

(x1,−y1) = (x2,−y2). 
Thus 

x1 = x2 and −y1 = −y2. 

So 

y1 = y2. 

Hence (x1, y1) = (x2, y2), so f is one-one. 
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2.8 (a) In Exercise 2.7 we saw that f is not 
one-one, so f does not have an inverse function. 

(b) In Exercise 2.7 we saw that f is one-one, so f 
has an inverse function.

In Exercise 2.5 we saw that the image of f is R2 and,

for each (x , y′) ∈ R2, we have 

(x , y  ′) =  f(x , − y ′). 
So f−1 is the function 

f−1 : R2 −→ R2 

(x , y  ′) � −→ (x , − y ′). 
This can be expressed in terms of x and y as 

f−1 : R2 −→ R2 

(x, y) � −→ (x, − y). 
(In this case, f−1 is actually equal to f .) 

(c) This is a linear function, which suggests that it 
is one-one. First we confirm this algebraically. 
Suppose that f(x1) =  f(x2); then 

8x1 + 3  =  8x2 + 3, 
so 8x1 = 8x2, and hence x1 = x2. Thus  f is one-one, 
and so it has an inverse function. We now find the 
image of f . We suspect that its image is R, so  we  
now prove this algebraically. Let y be an arbitrary 
element in R. We must show that there exists an 
element x in the domain R such that 

f(x) =  y; that  is,  8x + 3  =  y. 

Rearranging this equation, we obtain 
y − 3 

x = .
8 

This is in R and satisfies f(x) =  y, as required. Thus 
the image of f is R. 
Hence f−1 is the function 

f−1 : R −→ R

y − 3


y � −→ 
8 

. 

This can be expressed in terms of x as 
f−1 : R −→ R


x − 3

x � −→ .

8 

2.9 (a) The function 

g : [0, ∞ ) −→ R


x �
−→ | x|
is a restriction of f that is one-one. 
(There are many other possibilities.) 

2.10 (a) The rule of g ◦ f is 
(g ◦ f)(x) =  g(f(x)) = g(− x)


= 3(− x) +  1 


= − 3x + 1.

Thus g ◦ f is the function 

g ◦ f : R −→ R 

x � −→ − 3x + 1. 

(b) The rule of  f ◦ g is 
(f ◦ g)(x) =  f(g(x)) = f(3x + 1) 


= − (3x + 1) 


= − 3x − 1.

Thus f ◦ g is the function 

f ◦ g : R −→ R 

x � −→ − 3x − 1. 

2.11	 The rule of f ◦ g is 
(f ◦ g)(x, y) =  f(g(x, y)) = f(− x, y) 

= (− x, − y). 
Thus f ◦ g is the function 

f ◦ g : R2 −→ R2


(x, y) �
−→ (− x, − y). 
(In this case, f ◦ g = g ◦ f .) 

2.12 The rule of g ◦ f is 
(g ◦ f)(x) =  g(f(x)) = g(3x + 1) 


3

= 

(3x + 1) +  2  
1 

= 
x + 1  

. 

The domain of g ◦ f is 
{ x ∈ [− 1, 1] : f(x) ∈ R − {  −  2}} . 

If x ∈ [− 1, 1], then f(x) ∈ R − {  −  2} unless 
f(x) =  − 2. Now f(x) =  − 2 when  

3x + 1  =  − 2, 
that is, when 

x = − 1. 
So the domain of g ◦ f is 

[− 1, 1] − {  −  1} = (− 1, 1]. 
Thus g ◦ f is the function 

g ◦ f : (− 1, 1] −→ R 
1 

x � −→ . 
x + 1  
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2.13 For each x ∈ R, we have Rearranging these equations, we obtain 

f(g(x)) = f(x − 3) x = y ′ and y = −x ′ . 
= (x − 3) + 3 So, for each (x′, y′) ∈ R2, we have 

= x; (x ′ , y  ′) =  f(y ′ ,−x ′), 
that is, f ◦ g = iR. thus f(R2) ⊇ R2 . 
For each x ∈ R, we have Since f(R2) ⊆ R2 and f(R2) ⊇ R2, it follows that 

g(f(x)) = g(x + 3)  f(R2) =  R2, so  f is onto. 

= (x + 3)  − 3 

= x; 
that is, g ◦ f = iR. 
Since g ◦ f = iR and f ◦ g = iR, it follows that g is 
the inverse function of f . 

2.14 (a) This function is a rotation of the plane 
through 3π/2 anticlockwise about the origin. 

(b) This function is a translation of  the plane that  
moves each point to the left by 2 units and up by 
1 unit. 

2.15 (a) 

(b) 

2.16 (a) This function is a rotation (see 
Exercise 1(c)) so we expect to find that f(R2) =  R2 . 
Let (x, y) ∈ R2; then  f(x, y) = (−y, x) ∈ R2, so  
f(R2) ⊆ R2 . 
We must now show that f(R2) ⊇ R2 . 

Let (x , y′) ∈ R2 . We must show that there exists 
(x, y) ∈ R2 such that f(x, y) = (x , y′), that is, 

x = −y and y = x. 

(b)


The graph above suggests that f(R) =  R. We  now 

prove this algebraically.

Let x ∈ R; then  7  − 3x ∈ R, so  f(R) ⊆ R.

Let y ∈ R; then we want to find x ∈ R such that

y = 7  − 3x. 

7 − y
This gives x = , which is in R, so  for  each  y ∈ R

3 
7 − y

we have y = f . So  f(R) ⊇ R.
3 

Since f(R) ⊆ R and f(R) ⊇ R, it follows that 
f(R) =  R, so  f is onto. 

(c) 

The graph above suggests that f(R) = [−1,∞). We 
now prove this algebraically. 
Let x ∈ R; then  

f(x) =  x 2 − 4x + 3  

= (x − 2)2 − 1 ≥ −1. 
So f(R) ⊆ [−1,∞).

Let y ∈ [−1,∞). We must show that there exists

x ∈ R such that f(x) =  y, that is, 


x 2 − 4x + 3  =  y. 

This means that 
(x − 2)2 = y + 1, √

and we can take x = 2  +  y + 1, which is in R since 
y + 1  ≥ 0. 
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√
So, for each y ∈ [− 1,∞ ), we have y = f(2 + y + 1).  (c) The graph in the solution to Exercise 2.16(c) 
Hence f(R) ⊇ [− 1,∞ ). suggests that f is not one-one. To show that this is 

Since f(R) ⊆ [− 1,∞ ) and  f(R) ⊇ [− 1,∞ ), it follows so, we find two points in the domain of f with the 

that f(R) = [− 1,∞ ). same image. For example, 

Since f(R) � = R, f is not onto. f(0) = f(4) = 3,

so f is not one-one.


(d) 
(d) The graph in the solution to Exercise 2.16(d) 
suggests that f is one-one. We prove this 
algebraically. 
Suppose that f(x1) =  f(x2); then 

2x1 + 3  =  2x2 + 3. 
Thus x1 = x2, so  f is one-one. 

2.18 (a) We have shown in Exercise 2.17(a) that f 
is one-one, so f has an inverse, and we have shown in 
the solution to Exercise 2.16(a) that 

(x , y  ′) =  f(y ,− x ′), 
so the inverse of f is the function 

The graph above suggests that f([0, 1]) = [3, 5]. We 
now prove this algebraically. 
Let x ∈ [0, 1]. Then 0 ≤ x ≤ 1, so 0 ≤ 2x ≤ 2, so 
3 ≤ 2x + 3  ≤ 5. Hence f(x) ∈ [3, 5]. Thus 
f([0, 1]) ⊆ [3, 5]. 
Let y ∈ [3, 5]; then we want to find x ∈ [0, 1] such 

y − 3
that y = 2x + 3. This gives x = . Now  

2 
y − 3

3 ≤ y ≤ 5, so 0 ≤ y − 3 ≤ 2, so 0 ≤ ≤ 1. Thus 
2 

y − 3 ∈ [0, 1], as required. So for each y ∈ [3, 5] we 

have y = f
y − 3 

, where  
y − 3 ∈ [0, 1]. So 

2 2 
f([0, 1]) ⊇ [3, 5].

Since f([0, 1]) ⊆ [3, 5] and f([0, 1]) ⊇ [3, 5], it follows

that f([0, 1]) = [3, 5]. So f is not onto.


2.17 (a) This function f is a rotation of the plane, 
so we expect f to be one-one. We now prove this 
algebraically. 
Suppose that f(x1, y1) =  f(x2, y2); then 

(− y1, x1) = (− y2, x2), 
so 

− y1 = − y2 and x1 = x2. 

Thus (x1, y1) = (x2, y2), so f is one-one. 

(b) The graph in the solution to Exercise 2.16(b) 
suggests that f is one-one. We prove this 
algebraically. 
Suppose that f(x1) =  f(x2); then 

7 − 3x1 = 7  − 3x2. 

Thus x1 = x2, so  f is one-one. 

f−1 : R2 −→ R2 

(x , y  ′) � −→ (y ,− x ′). 
This can be expressed in terms of x and y as 

f−1 : R2 −→ R2 

(x, y) � −→ (y,− x). 

(b) We have shown in the solutions to 
Exercises 2.16(b) and 2.17(b) that f is one-one and 
that 

7 − y 
y = f , for y ∈ R.

3 
Hence f has an inverse 

f−1 : R −→ R

7 − y


y � −→ .
3 

This can be expressed in terms of x as 
f−1 : R −→ R


7 − x

x � −→ .

3 
(c) We have shown in Exercise 2.17(c) that f is not 
one-one, so f does not have an inverse. 

(d) We have shown in the solutions to 
Exercises 2.16(d) and 2.17(d) that f is one-one and 
that the image of f is [3, 5]. We also showed that 

y − 3 
y = f , for y ∈ [3, 5].

2 
Hence f has an inverse 

f−1 : [3, 5] −→ [0, 1] 
y − 3 

y � −→ 
2 

. 

This can be expressed in terms of x as 
f−1 : [3, 5] −→ [0, 1]


x − 3

x � −→ .

2 
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2.19 (a) Since any number in the domain of g has 
an image under g which is in R, and hence in the 
domain of f , the domain of f ◦ g is the domain of g. 
Also, 

1 1
(f ◦ g)(x) =  f

x2 − 4 
= 7  − 3 

x2 − 4 
. 

Hence the composite is the function 

f ◦ g : R − {2, −2} −→  R 
3 

x �−→ 7 − 
x2 − 4 

. 

(b) Since any point in the domain of g has an image 
under g which is in R2, and hence in the domain of 
f , the domain of f ◦ g is the domain of g. 
Also, 

(f ◦ g)(x, y) =  f(y, x) = (−x, y). 
Hence the composite is the function 

f ◦ g : R2 −→ R2 

(x, y) �−→ (−x, y). 

33.1 (a) The negation can be expressed as ‘x = is5 
not a solution of the equation 3x + 5 = 0’. 

(b) The negation can be expressed as ‘π is greater 
than or equal to 5’. 

(c) The negation can be expressed as ‘there is no 
integer that is divisible by 3 but not by 6’, or, 
alternatively, ‘every integer that is divisible by 3 is 
also divisible by 6’. 

(d) The negation can be expressed as ‘there is a real 
number x that does not satisfy the inequality x2 ≥ 0’. 

(e) The negation can be expressed as ‘at least one 
of the integers m and n is even’. 

(f ) The negation can be expressed as ‘the integers 
m and n are both even’. 

3.2 (a) The statement can be rewritten as ‘if 
x2 − 2x + 1  =  0,  then  (x − 1)2 = 0’. This is true. 

(b) The statement can be rewritten as ‘if n is odd, 
then n3 is odd’. This is true. 

(c) The statement can be rewritten as ‘if a given 
integer is divisible by 3, then it is also divisible by 6’. 
This is false. 

(d) The statement can be rewritten as ‘if x >  2, 
then x >  4’. This is false. 

3.3 (a) The converse is ‘if m + n is even, then m 
and n are both odd’. The given statement is true, 
and its converse is false. 

(b) The converse is ‘if m + n is odd, then one of the 
pair m, n is even and the other is odd’. The given 
statement and its converse are both true. 

3.4 (a) The two implications are ‘if the product 
mn is odd, then both m and n are odd’, and ‘if both 
m and n are odd, then the product mn is odd’. Both 
implications are true, so the equivalence is true. 

(b) The two implications are ‘if the product mn is 
even, then both m and n are even’, and ‘if both m 
and n are even, then the product mn is even’. The 
first implication is false, and the second is true. The 
equivalence is false. 

3.5 (a) Suppose that n is an even integer. Then 
n = 2k, where  k ∈ Z, so  

n 2 = (2k)2 = 4k2 = 2(2k2). 
Hence n2 is even, as required. 

(b) Let m and n be multiples of k. Then  m = ka 
and n = kb, where  a and b are integers. Hence 

m + n = ka + kb = k(a + b). 
Since a + b is an integer, we deduce that m + n is a 
multiple of k, as required. 

(c) Suppose that one of the pair m, n is even and 
the other is odd. Then one of them is equal to 2k and 
the other to 2l + 1, for some integers k and l. Then  

m + n = 2k + (2l + 1)  =  2(k + l) +  1, 
which shows that m + n is odd. 

(d) Let n be a positive integer. We note that 

n 2 + n = n(n + 1). 
Either n or n + 1 must be even, so n2 + n is even, as 
required. 
(Alternatively, the implication can be proved by 
considering two separate cases: the case where n is 
even, and the case where n is odd. However the 
above proof is shorter and simpler.) 

3.6 (a) Taking m = 1  and  n = 3  provides  a  
counter-example, since then m + n = 4,  which  is  
even. 

(b) The number −3 is a counter-example, because 
−3 < 2 but ((−3)2 − 2)2 = (9  − 2)2 = 72 = 49, which 
is not less than 4. 

(c) We look for a counter-example. Here is a table 
for the first few values of n. 

n 1 2 3 

4n + 1  5 17 65  

Since 43 + 1 = 65 is not a prime number, it provides 
a counter-example, so this implication is false. 

3.7 (a) Let P (n) be the statement 
11 +  2  +  · · · + n = n(n + 1).2 

Then P (1) is true, since 1 = 1 
2 1(1 + 1). 

Let k ≥ 1, and assume that P (k) is  true:  

1 +  2  +  · · · + k = 1 k(k + 1).2 
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We wish to deduce that P (k + 1)  is  true:  

1 + 2 +  · · · + k + (k + 1)  =  1 
2 (k + 1)(k + 2). 

Now 

1 +  2 +  · · · + k + (k + 1) 


= 1 k(k + 1) +  (k + 1)  (by  P (k))
2


= (k + 1)(  1 k + 1) 
2

1
= 2 (k + 1)(k + 2). 

Thus, for k = 1, 2, . . ., 
P (k) ⇒ P (k + 1). 

Hence, by mathematical induction, P (n) is true for  
n = 1, 2, . . .. 

(b)	 Let P (n) be the statement 
313 + 23 + · · · + n = 1 n 2(n + 1)2 .4 

Then P (1) is true, since 

13 = 1  and  1 12(1 + 1)2 = 1.4 

Let k ≥ 1, and assume that P (k) is true:  

13 + 23 + · · · + k3 = 1 k2(k + 1)2 .4 

We wish to deduce that P (k + 1)  is  true:  
113 + 23 + · · · + k3 + (k + 1)3 = 4 (k + 1)2(k + 2)2 . 

Now 

13 + 23 + · · · + k3 + (k + 1)3 

= 1 k2(k + 1)2 + (k + 1)3 (by P (k))4


= (k + 1)2( 1 k2 + (k + 1)) 
4

1
= 4 (k + 1)2(k2 + 4k + 4) 

1
= 4 (k + 1)2(k + 2)2 . 

Thus, for k = 1, 2, . . ., 
P (k) ⇒ P (k + 1). 

Hence, by mathematical induction, P (n) is true for  
n = 1, 2, . . .. 

3.8 (a) Let P (n) be the statement ‘42n−3 + 1  is  a  
multiple of 5’. 
Then P (2) is true, because 42×2−3 + 1  =  41 + 1  =  5.  

Now let k ≥ 2, and assume that P (k) is true; that is, 

42k−3 + 1 is a multiple of 5. 

We wish to deduce that P (k + 1) is true; that is, 

42(k+1)−3 + 1  =  42k−1 + 1 is a multiple of 5. 

Now 

42k−1 + 1  =  4242k−3 + 1  

= 16  × 42k−3 + 1  

= 15  × 42k−3 + 42k−3 + 1. 
The first term here is a multiple of 5, and 42k−3 + 1  
is a multiple of 5, by P (k). Therefore 42k−1 + 1  is  a  
multiple of 5. Hence 

P (k) ⇒ P (k + 1), for k = 2, 3, . . . .  

Hence, by mathematical induction, P (n) is true,  for  
n = 2, 3, . . . .  

Solutions to the exercises 

(b)	 Let P (n) be the statement 5n < n!. 
Then P (12) is true, because 512 = 2.44 × 108 and 
12! = 4.79 × 108, both to three significant figures. 
Now let k ≥ 12, and assume that P (k) is true; that is, 

5k < k!. 
We wish to deduce that P (k + 1) is true; that is, 

5(k+1) < (k + 1)!. 
Now 

5k+1	 = 5  × 5k


< 5 × k! (by  P (k))

< (k + 1)k!

= (k + 1)!  ,


where we have used the fact that k ≥ 12, so 
k + 1  ≥ 13 > 5. Hence 

P (k) ⇒ P (k + 1), for k = 12, 13, . . . .  

Hence, by mathematical induction, P (n) is true, for 
n = 12, 13, . . . .  

3.9 (a) Suppose that there exist real numbers a 
and b with ab > 1 

2 (a
2 + b2). Then a2 − 2ab + b2 < 0; 

that is, (a − b)2 < 0. This is a contradiction, so our 
supposition must be false. Hence there are no such 
real numbers a and b. 

(b) Suppose that there exist integers m and n with 
5m + 15n = 357. The left-hand side of this equation 
is a multiple of 5, so the right-hand side is also. But 
this is a contradiction, so our supposition must be 
false. Hence there are no such integers m and n. 

3.10 Suppose that n = a + 2b, where  a and b are 
1positive real numbers. Suppose also that a <  2 n and 

b <  1 n. Then  4


n = a + 2b <  1 n + 2(  1 n) =  n.
2 4 

This contradiction shows that the supposition that 
a <  1 n and b <  1 n must be false; that is we must 2 4 
have a ≥ 1 n or b ≥ 1 n.2 4 

3.11 (a) We prove the contrapositive implication, 
which is 

3 n is odd ⇒ n is odd. 
Suppose that n is odd. Then n = 2k + 1 for some 
integer k. Then  

n 3 = (2k + 1)3


= (2k + 1)(4k2 + 4k + 1) 


= 8k3 + 12k2 + 6k + 1 


= 2(4k3 + 6k2 + 3k) + 1,

which is odd. 
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(b) We prove the contrapositive implication, which 
is ‘if at least one of m and n is even, then mn is 
even’. 
Suppose that at least one of m and n is even; 
without loss of generality, we can take it to be m 
(since otherwise we can just interchange m and n). 
Then m = 2k for some integer k. Hence mn = 2kn, 
which is even. 

(c) Let n be an integer which is greater than 1. We 
prove the contrapositive implication, which is ‘if n is 
not a prime number, then n is divisible by at least √
one of the primes less than or equal to n’. 
Suppose that n is not a prime number. Then n = ab 
for some integers a, b, where  1  < a,  b  < n. By  the  
result of Example 3.15, at least one of a and b is less √
than or equal to n. This number has a prime √
factor, which must also be less than or equal to n, 
and this prime factor must also be a factor of n. This  
proves the required contrapositive implication. 

3.12 (a), (b) and (c) all have the same meaning. 
(d) and (f) have the same meaning.

(You may like to show that (a) is true, and hence

that (b) and (c) are true; that (d) and (f) are true,

but (e) is false.)


3.13 132 = 169 and 172 = 289, so we need check 
only the primes 2, 3, 5, 7, 11, 13.

221 is divisible by 13 (221 = 13 × 17), so it is not

prime.

223 is not divisible by any of 2, 3, 5, 7, 11 and 13, so 
it is prime. 

3.14 (a) This statement is true. 
We have 

n 3 − n = n(n 2 − 1) = n(n − 1)(n + 1). 
Either n is even or n + 1 is even, so n3 − n is even. 

(b)	 This statement is false. 
For example, 6 + 4 is a multiple of 5, but 6 and 4 are 
not multiples of 5. 

(c) This statement is false. 
For example, if θ = π/2, then 

sin 2θ = sin  π = 0, 
but 

2 sin  θ = 2  sin(π/2) = 2. 

(d) This statement is false. 
For example, f (0) = f (2) = 1. 

(e)	 This statement is true. 
We show that f ◦ g is the identity on R − {0} and 
that g ◦ f is the identity on R − {1}. 

We have 
1 1

(f ◦ g)(x) =  f 1 +  = ( ) = x 
x 1

1 +  − 1 
x 

and 

f ◦ g : R − {0} −→  R − {0}. 
Also, 

1 1
(g ◦ f )(x) =  g = 1  +  

x − 1 1/(x − 1) 
= 1  +  x − 1 =  x 

and 

g ◦ f : R − {1} −→  R − {1}. 
Hence, from Strategy 2.1, g is the inverse of f . 

3.15 (a) The converse is as follows. 
If m − n is an even integer,

then m and n are both even integers.


(b) The original statement is true. 
Suppose that m and n are both even; then 

m = 2p, n = 2q, where p, q are integers. 
Then 

m − n = 2p − 2q 

= 2(p − q), 
which is even. 
The converse is false. 
For example, 

7 − 3 = 4  is  even,

but 7 and 3 are both odd.


3.16	 (a) Let P (n) be the statement 
1 1 1 n − 1 

+ + · · · + = .
1 × 2 2 × 3 (n − 1)n n 

Then P (2) is true, since 
1 1 2 − 1 

=	 = .
1 × 2 2 2 

Assume that P (k) is true:  
1 1 1 k − 1 

+ + · · · + = .
1 × 2 2 × 3 (k − 1)k k 

We wish to deduce that P (k + 1)  is  true:  
1 1 1 1 

+ + · · · + +
1 × 2 2 × 3 (k − 1)k k(k + 1)  

k 
= . 

k + 1  
Now 

1 1 1 1 
+ + · · · + +

1 × 2 2 × 3 (k − 1)k k(k + 1)  
k − 1 1 

= + (by P (k))
k k(k + 1)  

(k − 1)(k + 1) +  1  
= 

k(k + 1)  

k2 k 
= = . 

k(k + 1)  k + 1  
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Thus, for k = 2, 3, . . ., 
P (k) ⇒ P (k + 1). 

Hence, by mathematical induction, P (n) is true for  
n = 2, 3, . . .. 

(b)	 Let P (n) be the statement 

32n − 1 is divisible by 8. 
Then P (1) is true, since 

32 − 1 =  9  − 1 =  8, 
which is divisible by 8. 
Assume that P (k) is true:  

32k − 1 is divisible by 8. 
We wish to deduce that P (k + 1)  is  true:  

32(k+1) − 1 is divisible by 8. 
Now 

32(k+1) − 1 = 3232k − 1 

= 9  × 32k − 1 

= 8  × 32k + (32k − 1), 
which is also divisible by 8, since P (k) is true.  

Thus, for k = 1, 2, . . ., 
P (k) ⇒ P (k + 1). 

Hence, by mathematical induction, P (n) is true for  
n = 1, 2, . . .. 

3.17 Suppose that the given statement is false; that 
is, there are real numbers a and b for which 

(a + b)2 < 4ab. 

Then 

a 2 + 2ab + b2 < 4ab, 

so 

a 2 − 2ab + b2 < 0, 
so 

(a − b)2 < 0. 
But (a − b)2 is a square, so cannot be negative. This 
is a contradiction, so the given statement must be 
true. 
Hence 

(a + b)2 ≥ 4ab for all real numbers a and b. 

3.18	 (a) The contrapositive is as follows. 
If n is not divisible by 3, 

2then n is not divisible by 3. 

(b) Suppose that n is not divisible by 3. Then 

n = 3k + 1  or  n = 3k + 2, 
for some integer k. 
If n = 3k + 1,  then  

n 2 = 9k2 + 6k + 1  

= 3k(3k + 2) +  1, 
which is not divisible by 3. 

Solutions to the exercises 

If n = 3k + 2,  then  

n 2 = 9k2 + 12k + 4  

= 3(3k2 + 4k + 1)  +  1, 
which is not divisible by 3. 
Hence the contrapositive is true. 
Hence the original statement is true. 

3.19 (a) This statement is false.

For example, −4 < 3, but (−4)2 ≮ 32 .


(b) This statement is false.

For example, if x = 1,  then  x2 − x = 0, not 2.


(c) This statement is true.

One value of x satisfying x2 − x = 2  is  x = 2. 


(d)	 This statement is false. 

x 2 − x = −1 ⇔ x 2 − x + 1  =  0  

⇔ 
( 
x − 1 

)2 + 3 = 0,2 4 

which is not possible for any real x. 

(e) This statement is false. 
For example, if x = y = 1,  then  x/y and y/x are both

the integer 1.


(f ) This statement is true.

We prove it by mathematical induction.

Let P (n) be the statement


212 + 22 + · · · + n = 1 n(n + 1)(2n + 1).6 

Then P (1) is true, since 
2 × 31 × 1 × (1 + 1)(2 + 1) = = 1 =  12 .6 6 

Assume that P (k) is  true:  
112 + 22 + · · · + k2 = k(k + 1)(2k + 1).6 

We wish to deduce that P (k + 1)  is  true:  

12 + 22 + · · · + (k + 1)2


1
= 6 (k + 1)(k + 2)(2k + 3). 

Now, 
12 + 22 + · · · + k2 + (k + 1)2 

= 1 k(k + 1)(2k + 1) +  (k + 1)2 (by P (k))6

1
= 6 (k + 1)(k(2k + 1) + 6(k + 1)) 

1
= 6 (k + 1)(2k2 + 7k + 6) 

1
= 6 (k + 1)(k + 2)(2k + 3). 

Hence 

P (k) ⇒ P (k + 1), for k ≥ 1. 
Hence, by mathematical induction, P (n) is  true for  
n = 1, 2, . . . .  
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(g) Let P (n) be the statement 4.3 (a) For n = 5, the Geometric Series Identity is 
1 1 1 1 a 5 − b5 = (a − b)(a 4 + a 3b + a 2b2 + ab3 + b4).1 − 1 − · · ·  1 − = .
2 3 n 2n (b) If n is an odd positive integer, then 

Then P (2) is false,  since  (−b)n = (−1)nbn = −bn , 
1 − 1 �= 1 .2 4 so 

Hence the statement is false. a n − (−b)n = a n + bn . 
(In fact, as you can check, By Theorem 4.2, 

P (k) is true  ⇒ P (k + 1) is true, for k ≥ 2; a n − (−b)n = (a − (−b))(a n−1 + a n−2(−b) +  · · ·  
that is, step 2 of a proof by mathematical induction + a(−b)n−2 + (−b)n−1),
works, even though step 1 does not. 

so, since n − 1 is  even and  n − 2 is odd, 
The correct expression for the product is 1/n.) 

a n + bn = (a + b)(a n−1 − a n−2b + · · ·  

4.1 (a) By Theorem 4.1, the coefficient of a5b4 in 
− abn−2 + bn−1), 

(a + b)9 is as required. 

9 9! 9 × 8 × 7 × 6 For n = 5, we have 
= = = 126.4 4! 5! 4 × 3 × 2 × 1 a 5 + b5 = (a + b)(a 4 − a 3b + a 2b2 − ab3 + b4). 

(b) By Theorem 4.1, the term involving x4 in 4.4 Using the corollary to Theorem 4.2, with a = 1  
(1 + 2x)5 is and r = 1 , we obtain ( ) 2 

1 1 15 11 × (2x)4 = 
5! × 24 x 4 

4 4! 1! 1 + + + · · · +
2n−12 4 

= (5  × 16)x 4 
+ · · · + 

( 
1 
)n−1= 1  +  1 + 

( 
1 
)2 

2 2 24= 80x , (
2 )

n )1 − ( 1 

so the required coefficient is 80. = 1  
1 − 1 

2 

4.2 (a) By Theorem 4.1, with b replaced by −b, 1
= 2  1 −


(a − b)n 2n


1
= (a + (−b))n = 2  − 
2n−1 

. 
n n = 0 

a n + 1 
a n−1(−b) +  · · ·  4.5 By the Polynomial Factorisation Theorem, x + 3  ( ) ( ) is a factor of p(x) if and only if p(−3) = 0, that is, 

n+ a n−k (−b)k + · · · + 
n (−b)n 

0 = (−3)3 + c(−3)2 + 6(−3) + 36 k n ( ) ( ) = −27 + 9c − 18 + 36 n n = a n − a n−1b + · · ·  = 9c − 9.0 1 
This equation has just one solution, c = 1,  so  x + 3  is  n
+ (−1)k n

a n−kbk + · · · + (−1)n bn . a factor  of  p(x) if and only if c = 1. 
k n 

(b) If a = 1  and  b = 1,  then  a − b = 0, so we obtain 4.6 (a) (i) Since all the roots are integers, the 
only possible roots are the factors of 4, that is, n

0 =  
n − + · · · + (−1)k n 

+ · · ·  ±1, ±2, ±4. Considering these in turn, we obtain the 0 1 k
( ) following table.

+ (−1)n n

. x 1 −1 2  −2 4 −4n 

For n = 4, this identity is p(x) 2 0 0 −16 20 −108 
4 4 4 4 + 

4 So the only solutions are x = −1 and  x = 2.  In  fact,  0 =  0 
− 1 + 2 

− 3 4 
x 3 − 3x 2 + 4  =  (x + 1)(x − 2)(x − 2).

= 1  − 4 + 6  − 4 + 1  

= 0, (ii) Since all the roots are integers, the only possible 
roots are the factors of −15, that is, ±1, ±3, ±5, ±15. 

as expected. Considering these in turn, we obtain the following 
table. 

x 1 −1 3  −3 5 · · ·  

p(x) 0 −48 0 −192 0 · · ·  
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Solutions to the exercises 

We do not need to work out any more values, as we 4.10 (a) Putting x = 2, we obtain 
already have three roots: x = 1,  x = 3  and  x = 5.  So  16 + 4 − 26 + 6 = 0, so x − 2 is a factor. Hence 

x 3 − 9x 2 + 23x − 15 = (x − 1)(x − 3)(x − 5). 2x 3 + x 2 − 13x + 6  =  (x − 2)(2x 2 + 5x − 3) 

(b)	 A suitable equation is = (x − 2)(x + 3)(2x − 1). 

(x − 1)(x − 2)(x − 3)(x + 3)  =  0, (b) Trying integer values which are factors of 10, we 
that is, find that x = 1 is a root, so x − 1 is a factor. Hence 

x 4 − 3x 3 − 7x 2 + 27x − 18 = 0. x 3 + 6x 2 + 3x − 10 = (x − 1)(x 2 + 7x + 10)

= (x − 1)(x + 2)(x + 5),


4.7 (a) (a + 3b)4 
so the solutions of x3 + 6x2 + 3x − 10 = 0 are 1, −2 

4 4 4 = 0 
a 4 + 1 

a 3(3b) +  2 
a 2(3b)2 and −5. 

( ) ( ) (c) x 2 + x = y 2 + y ⇔ x 2 − y 2 + x − y = 0. 
4 4+ 3 

a(3b)3 + 4 (3b)4 

= a 4 + 4a 33b + 6a 29b2 + 4a27b3 + 81b4


= a 4 + 12a 3b + 54a 2b2 + 108ab3 + 81b4


We note that x = y is a solution, so x − y is a factor. 
Hence 

x 2 − y 2 + x − y = (x − y)(x + y + 1), 
so x = y or x = −y − 1. 

(b)	 (1 − t)7 ( 
7 

) ( ) ( ) 4.11 (a) If the sum of the roots is 0 and the 7 7 = 0 + (−t) +  (−t)2	 product is −30, then the cubic polynomial must be of 1 2 ( ) ( ) ( ) the form 
7 (−t)3 + 7 (−t)4 + 7+	 3 4 5 (−t)5 x 3 + cx + 30, for some c ∈ R.


( ) ( ) If x = 3 is a root, then

7 (−t)6 + 7+ 6 7 (−t)7	 27 + 3c + 30  =  0, 

= 1  − 7t + 21t2 − 35t3 + 35t4 − 21t5 + 7t6 − t7	 so c = −19.

Hence the polynomial is x3 − 19x + 30.


4.8 (a) The coefficient of a3b7 is	 (b) We know that x − 3 is a factor. Hence 
10 =

10 × 9 × 8 
= 120.	 x 3 − 19x + 30  =  (x − 3)(x 2 + 3x − 10)

7 3 × 2 = (x − 3)(x − 2)(x + 5),

13 is
(b) The coefficient of x so the other two roots are 2 and −5. 

15 22 15 × 14 
= × 4 = 420.13 2 

4.9 (a) This is a geometric series with a = 3,  

r = − 1 and n = 12 terms, so its sum is 3 

3	 ) = 3  × 33
(1 − ( 

− 1 
)12) 

4 (1 − 
( 

1 
)12)31 − − 1 

3


9
= 4 (1 − 
( 

1 
)12)3 

� 2.25. 

(b) This is a geometric series with first term 1, 
a

common ratio r = = 1  and  n + 1 terms, so its 
b 

sum is ( a )n+1 
1 − ( a )n+1


b ( ) = 
b 

1 −
 .a
1 − b − a b


b
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