
1 Sets  

After working through this section, you should be able to: 

(a) use set notation; 
(b) determine whether two given sets are equal and whether one given 

set is a subset of another; 
(c) find the union, intersection and difference of two given sets. 

1.1 What is a set? 
In mathematics we frequently consider collections of objects of various 
kinds. We may, for example, consider: 
• the solutions of a quadratic equation; 
• the points on a circle; 
• the prime numbers less than 100; 
• the vertices of a triangle; 
• the domain of a real function. 

The concept of a  set provides the unifying framework needed to investigate

such collections systematically.


You can think of a set as a collection of objects, such as numbers, points,

functions, or even other sets. Each object in a set is an element or

member of the set, and the elements belong to the set, or are in the set.


There is no limitation on the types of object that may appear in a set,

provided that the set is specified in a way that enables us to decide, in

principle, whether a given object is in the set.


There are many ways of making such a specification. For example, we can

define S to be the set of numbers in the list


4, 9, 3, 2. 

This enables us to decide that the number 2 (say) is in S, but that the 
number 1 (say) is not in S. We can illustrate this set by a diagram, as 
shown in the margin; such a diagram is called a Venn diagram, after the 
19th-century Cambridge mathematician John Venn. 

We can also define a set E by stating 

let E be the set of all even integers. 

This description enables us to determine whether a given object is in E by 
deciding whether it is an even integer; for example, 6 is in E, but 5 is not. 

Some sets are used so often that special symbols are reserved for them. 

R denotes the set of real numbers. 
∗R denotes the set of non-zero real numbers.


Q denotes the set of rational numbers.


Z denotes the set of integers . . . ,−2,−1, 0, 1, 2, . . . . 


N denotes the set of natural numbers 1, 2, 3, . . . . 


Section 1 Sets 

A prime number is an integer n, 
greater than 1, whose only 
positive factors are 1 and n; the  
first few primes are 2, 3, 5, 7, 11, 
13, 17. 

The symbol S is a label for the 
set, not a member of the set. 
Similar labels will appear in 
other diagrams. 

A real number is a number with 
a decimal expansion (possibly 
infinite), for example, 
π = 3.14 . . .  or 1.1. 

A rational number is a real 
number that can be expressed as 
a fraction, for example, 14/5 or 
−3/4. 
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Unit I2 Mathematical language 

We use the symbol ∈ to indicate membership of a set; for example, we 
indicate that 7 is a member of N by writing 

7 ∈ N.	 We read this as ‘7 belongs to N’ 
or ‘7 is in N’.

We indicate that −9 is  not a member  of  N by writing 

−9 /∈ N.	 We read this as ‘−9 does not  

We also use the symbol ∈ when we wish to introduce a symbol that stands 
belong to N’ or  ‘−9 is not in N’. 

for an arbitrary element of a set. For example, we write 

let x ∈ R 

to indicate that x is an arbitrary (unspecified) member of the set R. We  
sometimes refer to x as a real variable. In general, a variable is a symbol 
(like x or n) that stands for an arbitrary element of a set. 

Exercise 1.1 Which of the following statements are true?


∈ N (c) 1.3 /
(a) −2 ∈ Z (b) 5 / ∈ Q 

(d) 1 
2 ∈ N (e) −π ∈ R (f) 2 ∈ Q 

1.2 Set notation 
We now examine some formal ways of specifying a set. 

We can specify a set with a small number of elements by listing these 
elements between a pair of braces (curly brackets). For example, we can 
specify the set A consisting of the first five natural numbers by 

A = {1, 2, 3, 4, 5}. 
The membership of a set is not affected by the order in which its elements 
are listed, so we can specify this set A equally well by 

A = {5, 2, 1, 4, 3}. 
Similarly, we can specify the set B of vertices of the square shown in the 
margin by 

B = {(0, 0), (1, 0), (1, 1), (0, 1)}. 
We can even specify a set C whose elements are the three sets {1, 3, 5}, 
{9, 4} and {2} by 

C = {{1, 3, 5}, {9, 4}, {2}}. 
A set with only one element, such as the set {2},  is called a  singleton. 
(Do not confuse the set {2} with the number 2.) 

Exercise 1.2 Which of the following statements are true? 

(a) 1 ∈ {4, 3, 1, 7}
(b) {−9} ∈ {{6, 1, 2}, {8, 7, 9, 5}, {−9}, {5, 4}}
(c) {9} ∈ {5, 6, 7, 8, 9}
(d) (0, 1) ∈ {(1, 0), (1, 4), (2, 4)}
(e) {0, 1} ∈ {{0, 1}, {1, 4}, {2, 4}} 
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Section 1 Sets 

It does not matter if we specify a set element more than once within set 
brackets; we still describe the set that contains each specified element. For 
example, 

{1, 2, 3, 3} and {1, 2, 3} 

describe the same set. However, we usually try to avoid specifying an 
element more than once. 

For a set with a large number of elements, it is not practicable to list all 
the elements, so we sometimes use three dots (called an ellipsis) to indicate 
that a particular pattern of membership continues. For example, we can 
specify the set consisting of the first 100 natural numbers by writing 

{1, 2, 3, . . . , 100}. 
The use of an ellipsis can be extended to certain infinite sets. For example, 
we can specify the set of all natural numbers by writing 

{1, 2, 3, . . .}. 
One disadvantage of this notation is that the pattern indicated by the 
ellipsis may be ambiguous. For example, it is not clear whether 

{3, 5, 7, . . .} 

denotes the set of odd prime numbers or the set of odd natural numbers 
greater than 1. For this reason, this notation can be used only when the 
pattern of membership is obvious, or where an additional clarifying 
explanation is given. 

An alternative way of specifying a set is to use variables to build up 
objects of the required type, and then write down the condition(s) that the 
variables must satisfy. For example, consider the open interval (3,∞), 
consisting of all real numbers x such that x >  3. Using set notation, we 
write this as 

{x ∈ R : x >  3}, 
which is read as  follows:  

A set can often be described in several different ways using such set 
notation. In particular, we can use a letter other than x to denote an 
arbitrary (general) element of a set; for example, the above interval can 
also be written as 

{r ∈ R : r >  3}. 
If it is necessary to include more than one condition after the colon, then 
we write either a comma or the word ‘and’ between the conditions. So the 
interval (0, 1]  can be written as  

{x ∈ R : x >  0, x  ≤ 1} or {x ∈ R : x >  0 and  x ≤ 1}, 
although usually we combine the inequalities and write 

{x ∈ R : 0  < x  ≤ 1}. 
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Unit I2 Mathematical language 

Sometimes it is convenient to specify a set by writing an expression in one 
or more variables before the colon, and the conditions on the variables 
after the colon. For example, the set of even integers less than 100 may be 
specified by 

{2k : k ∈ Z and k < 50}. 
Just as when we list the elements of a set, when we use set notation it does 
not matter if a set element is specified more than once. For example, 

{sin x : x ∈ R} and {x ∈ R : −1 ≤ x ≤ 1} 

specify the same set. 

Set notation is useful when we wish to refer to the set of solutions, called 
the solution set, of one or more equations. For example, the solutions of 
x2 = 1 form the set 

{x ∈ R : x 2 = 1} = {−1, 1}. 
The solution set of an equation depends on the set of values from which 
the solutions are taken. For example, the solution set of the equation 

(x − 1)(2x − 1) = 0 

is 
1{x ∈ R : (x − 1)(2x − 1) = 0} = {1, 2 } 

if we are interested in real solutions, but is 

{x ∈ Z : (x − 1)(2x − 1) = 0} = {1} 

if we are interested only in integer solutions. In this unit we assume that 
solutions are taken from R unless otherwise stated. 

Sometimes an equation has  no real solutions, so its solution set has no 
elements. This set is called the empty set and is denoted by ∅. For  
example, 

{x ∈ R : x 2 = −1} = ∅. 

Example 1.1 Use set notation to specify each of the following: 

(a)	 the set of all natural numbers greater than 50; 

(b)	 the set of all real solutions of the equation x4 + 8x2 + 16  =  0;  

(c)	 the set of all odd integers. 

Solution 

(a)	 The elements of this set are the natural numbers n such that n > 50. 
So the set is 

{n ∈ N : n > 50}. 
(b)	 The elements of this set are the real numbers x that satisfy the given In fact, the given equation has 

equation. So the set is no real solutions, so this set is 
the empty set ∅. 

{x ∈ R : x 4 + 8x 2 + 16  =  0}. 
(c)	 An  odd integer  is  one that can  be  written in the  form  2k + 1,  for  some  

integer k. So the set is 

{2k + 1 :  k ∈ Z}. 
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Section 1 Sets 

Exercise 1.3 Use set notation to specify each of the following: 

(a) the set of integers greater than −2 and less than 1000; 

(b) the closed interval [2, 7]; 

(c) the set of positive rational numbers with square greater than 2; 

(d) the set of even natural numbers; 

(e) the set of integer powers of 2. 

1.3 Plane sets 
In Unit I1 you met the plane R2, and saw that each point in the plane can 
be represented as an ordered pair (x, y) with respect to a given pair of 
axes. A set of points in R2 is called a plane set or a plane figure. Such plane sets occur in many 
Simple examples of plane sets are lines and circles. applications of mathematics; for 

example, in computer graphics. 

Lines 
Consider a straight line l with slope a and y-intercept b. This line is the 
set of all  points  (x, y) in the plane such that y = ax + b. Using set 
notation, we write this as 

l = {(x, y) ∈ R2 : y = ax + b}. 
(We sometimes refer to ‘the line y = ax + b’ as a shorthand way of

specifying this set.)


For a line parallel to the y-axis with x-intercept c, we write


l = {(x, y) ∈ R2 : x = c}. 

Exercise 1.4 

(a) Use set notation to specify the line l with slope 2 that passes

through the point (0, 5).


(b) Sketch the line l = {(x, y) ∈ R2 : y = 1  − x}. 

Circles 
The unit circle U is the set of points (x, y) in the plane whose distance 
from the origin (0, 0) is 1. By Pythagoras’ Theorem, these are the points 
(x, y) for  which  x2 + y2 = 1, so, in set notation, the unit circle is written as 

U = {(x, y) ∈ R2 : x 2 + y 2 = 1}. 
In general, the circle C of radius r centred at the point (a, b) is the set of 
points (x, y) that lie  at  a distance  r from (a, b). By Pythagoras’ Theorem, 

2these are the points (x, y) satisfying the equation (x − a)2 + (y − b)2 = r , 
so, in set notation, this circle is written as 

2C = {(x, y) ∈ R2 : (x − a)2 + (y − b)2 = r }. 

Exercise 1.5 

(a) Use set notation to specify the circle C of radius 3 centred at 
(1, −4). 

(b) Sketch the circle C = {(x, y) ∈ R2 : (x − 1)2 + (y − 3)2 = 4}. 
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Unit I2 Mathematical language 

Half-planes, discs and other plane sets 
Consider the line 

l = {(x, y) ∈ R2 : y = 1  − x}. 
This line splits R2 into three separate parts: the line l itself, the set H1 of 
points lying above the line, and the set H2 of points lying below the line. 

Consider an arbitrary point P = (x, y) in  H1 as shown in the margin. The 
point Q = (x, 1 − x) lies on the line l, below  P , as illustrated, so y >  1 − x. 
Similarly, each point (x, y) in  H2 satisfies y <  1 − x. Thus  

H1 = {(x, y) ∈ R2 : y >  1 − x} 

and 

H2 = {(x, y) ∈ R2 : y <  1 − x}. 
(In the diagrams, when a plane set illustrated does not include a boundary 
line, we draw the boundary line as a broken line.) 

The set of points on one side of a line, possibly together with all the points 
on the line itself, is known as a half-plane. A half-plane that does not 
include the points on the line can be specified using set notation in a 
similar way to the examples H1 and H2 above. The corresponding 
half-plane that includes the points on the line can be specified by changing 
the symbol > to ≥, or the symbol < to ≤. 

Next consider the unit circle 

U = {(x, y) ∈ R2 : x 2 + y 2 = 1}. 
This circle splits R2 into three separate parts: the circle U itself, the 
set D1 of points lying inside the circle and the set D2 of points lying 
outside the circle. 

The condition for a point (x, y) to lie inside U is that the distance from the 
origin is less than 1, so the square of the distance is also less than 1. Thus 

2D1 = {(x, y) ∈ R2 : x 2 + y < 1}. 
Similarly, 

2D2 = {(x, y) ∈ R2 : x 2 + y > 1}. 
The set of points inside a circle, possibly together with all the points on 
the circle, is known as a disc. If we wish to specify the disc consisting of 
the unit circle and the points inside it, we replace the inequality < by ≤ in 
the set notation specification of D1 given above. 

Now consider the set of points lying inside the square with vertices (0, 0), 
(1, 0), (1, 1) and (0, 1). This set can be written as 

{(x, y) ∈ R2 : 0  < x <  1, 0 < y  <  1}. 
If we wish to include the four boundary lines in the set, we replace each 
symbol < by ≤. We would show this set on a diagram by replacing the 
broken lines in the diagram in the margin by solid lines. 

Exercise 1.6 Sketch each of the following plane sets. 

(a) {(x, y) ∈ R2 : x <  1}
(b) {(x, y) ∈ R2 : y <  2 − 2x}
(c) {(x, y) ∈ R2 : (x − 1)2 + (y − 2)2 ≤ 4}
(d) {(x, y) ∈ R2 : x2 + (y + 3)2 > 1} 
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Section 1 Sets 

We conclude this subsection by considering the graph of a real function. In 
Unit I1, we sketched the graph of a real function f by plotting points of 
the form (x, f(x)) in R2, for each element x of the domain A. This  
suggests the following formal definition of a graph. 

Definition The graph of a real function f : A −→ R is the set


{ (x, f(x)) : x ∈ A} .


Exercise 1.7 Use set notation to specify: 

(a) the points in the square with vertices (0, 1), (2, 1), (2, 3), (0, 3), if 
the boundary is included; 

(b) the points on the graph of the function 

f : [0,∞ ) −→ R


x �
−→ 2x 2 + 1. 

1.4 Set equality and subsets 
Consider the sets A = { 1,− 1} and B = { x ∈ R : x2 − 1 = 0} . Although 
these sets are written in different ways, each set contains exactly the same 
elements, 1 and − 1. We say that these sets are equal. 

Definition Two sets A and B are equal if they have exactly the 
same elements; we write A = B. 

When two sets each contain a small number of elements, we can usually 
check whether these elements are the same, and hence decide whether the 
sets are equal. 

Exercise 1.8 Decide whether each of the following pairs of sets are 
equal. 

(a)	 A = { 2,− 3} and B = { x ∈ R : x2 + x − 6 = 0} . 

(b)	 A = { k ∈ Z : k is odd and 2 < k  <  10} and

B = { n ∈ N : n is a prime number and n <  10} .


If two sets each contain more than a small number of elements, it is less 
easy to check whether they are equal. We shall describe a method for 
dealing with cases like this after we have introduced an idea that we shall 
need. 

Consider the sets A = { 7, 2, 5} and B = { 2, 3, 5, 7, 11} . Each element of A 
is also an element of B. We say that A is a subset of B. 

Definition A set  A is a subset of a set B if each element of A is 
also an element of B. We also say that A is contained in B, and  we  
write A ⊆ B. 

We sometimes indicate that a set A is a subset of a set B by reversing the 
symbol ⊆ and writing B ⊇ A, which we read as ‘B contains A’. To 
indicate that A is not a subset of B, we write A � B. We may also write 
this as B � A, which we read as ‘B does not contain A’. 

Do not confuse the symbol ⊆ 
with the symbol ∈ . For example, 
we write 

{ 1} ⊆  {  1, 2, 3} , 
since { 1} is a subset of { 1,2,3} , 
and 

1 ∈ {  1, 2, 3} , 
since 1 is an element of { 1,2,3} . 
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Unit I2 Mathematical language 

When we wish to determine whether a given set A is a subset of a given 
set B, the method that we use depends on the way in which the two sets 
are defined. If A has a small number of elements, then we check directly by 
inspection whether each element of A is an element of B. Otherwise, we 
determine whether an arbitrary element of A fulfils the membership 
criteria for B, as illustrated by Example 1.2 below. 

To show that a given set A is not a subset of a given set B, we need to find 
at least one element of A that does not belong to B. The empty set ∅ is a 
subset of every set because we cannot find an element in ∅ which does not 
belong to the set in question. 

Example 1.2 In each of the following cases, determine whether A ⊆ B. 

(a)	 A = {1, 2,−4} and B = {x ∈ R : x5 + 4x4 − x − 4 = 0}. 
(b)	 A = {(x, y) ∈ R2 : x2 + y2 < 1} and B = {(x, y) ∈ R2 : x <  1}. 
Solution 

(a)	 The elements 1, 2, −4 belong  to  R, and we can check directly whether 
they also satisfy the equation x5 + 4x4 − x − 4 = 0.  We  have  

(1)5 + 4(1)4 − 1 − 4 = 0, so 1 ∈ B, 

(2)5 + 4(2)4 − 2 − 4 = 90, so 2 /∈ B. 

So 2 does not belong to B, and hence A is not contained in B. 

Example 1.3 Show that A is a proper subset of B, where  A and B are 
the sets defined in Example 1.2(b). 

Solution We showed in the solution to Example 1.2(b) that A ⊆ B. 
Also, the point (0, 2), for example, lies in B, since its x-coordinate 0 is less 
than 1, but (0, 2) does not lie in A, since  02 + 22 = 4  ≥ 1. This shows that 
A is a proper subset of B. 

Exercise 1.10 Show that A is a proper subset of B, where  A and B 
are the sets defined in Exercise 1.9(a). 

(b)	 From the diagram in the margin, it appears that A ⊆ B. We cannot 
check each of the elements of A individually, so we let (x, y) be an  
arbitrary element of A; then  (x, y) is a point  of  R2 with x2 + y2 < 1. 

Since y2 ≥ 0 for all y, this implies that x2 < 1, and hence that x <  1. 
Thus (x, y) ∈ B. 

Since (x, y) is an arbitrary element of A, we conclude that A ⊆ B. 

Exercise 1.9 In each of the following cases, determine whether 
A ⊆ B. 

(a)	 A = {(5, 2), (1, 1), (−3, 0)} and B = {(x, y) ∈ R2 : x − 4y = −3}. 
(b)	 A = {(x, y) ∈ R2 : x2 + y2 < 1} and B = {(x, y) ∈ R2 : y <  0}. 

If two sets A and B are equal, then A is a subset of B, and  B is a subset 
of A. If  a  set  A is a subset of a set B that is not equal to B, then we say  
that A is a proper subset of B, and  we  write  A ⊂ B or B ⊃ A. 

To show that a set A is a proper subset of a set B, we must show both 
that A is a subset of B, and that there is at least one element of B that is 
not an element  of  A. 

Since 2 /∈ B, we do not need to 
check whether −4 ∈ B. 

In some texts, the symbol ⊂ is 
used to mean ‘is a subset of’ (for 
which we use the symbol ⊆) 
rather than ‘is a proper subset 
of’. 
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Section 1 Sets 

We now return to the question of how we can show that two sets A and B 
are equal if they have more than a small number of elements. To do this, 
we show that each set is a subset of the other. 

Strategy 1.1 To show that two sets A and B are equal:

show that A ⊆ B;

show that B ⊆ A.


Example 1.4 Show that the following sets are equal:	 In Unit I1, Section 5, you saw 
that 

A = {(cos t, sin t) :  t ∈ [0, 2π]} and B = {(x, y) ∈ R2 : x 2 + y 2 = 1}. 
α(t) =  (cos  t, sin t), t  ∈ [0, 2π], 

Solution First we show that A ⊆ B. is a parametrisation of the unit 
circle, so we expect A and B to

Let (x, y) be an arbitrary element of A; then  be  the same set.  

x = cos  t and y = sin  t, for some t ∈ [0, 2π], 
so 

2 2 x 2 + y = cos t + sin2 t = 1. 

This implies that (x, y) ∈ B, so  A ⊆ B. 

Next we show that B ⊆ A. 

Let (x, y) be an arbitrary element of B; then  

x 2 + y 2 = 1. 

In order to show that (x, y)  is an element  of  A, we need to find a value of 
t ∈ [0, 2π] such that (x, y) = (cos  t, sin t). If we take t to be the angle 
between the x-axis and the line joining the point (x, y) to the origin, then 

x = cos  t and y = sin  t. 

Since t ∈ [0, 2π], it follows that (x, y) ∈ A, so  B ⊆ A. 

Since A ⊆ B and B ⊆ A, it follows that A = B. 

Exercise 1.11 Show that the following sets are equal: 
2A = {(t , 2t) :  t ∈ R} and B = {(x, y) ∈ R2 : y 2 = 4x}. 

1.5 Counting subsets of finite sets 
A finite set is a set which has a finite number of elements; that is, the 
number of elements is some natural number, or 0. We saw earlier that in The number  of elements is 0 in  
using set notation, we may list the elements of a finite set in any order. the case of the  empty set  ∅. 
For example, the set {1, 2, 3} can be written by ordering the elements in 
six different ways: 

{1, 2, 3}, {1, 3, 2}, {2, 1, 3}, {2, 3, 1}, {3, 1, 2}, {3, 2, 1} 

(with each element of the set specified just once). 

In general, a set with n elements can be ordered in 

n × (n − 1) × · · · × 1	 (1.1) 

different ways, as there are n choices for the first element, then n − 1 
choices for the second element, and so on, with just one possibility for the 
last element. 
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We denote expression (1.1) by n! (read as ‘n factorial’). 

Definition For any positive integer n, 

n! =  n × (n − 1) × (n − 2) × · · · × 3 × 2 × 1.

Also,


0! = 1.	 We define 0! to be 1 for 
convenience, so that results such 
as n! =  n × (n − 1)! are also true 

For example, a set with 10 elements can be ordered in for n = 1. Also, this definition 
makes sense because the number 

10! = 10 × 9 × · · · × 1 = 3 628 800 of different orderings of the 
elements of the empty set is 1; different ways. we cannot change the order of 

A finite set has only finitely many subsets—but how many? Consider, for no elements! 

example, the set {1, 2, 3}. Below, we list all the subsets of {1, 2, 3} in a 
table, according to the size k of the subsets. 

k subsets of {1, 2, 3} number of subsets 

0 ∅ 1

1 {1}, {2}, {3} 3

2 {1, 2}, {1, 3}, {2, 3} 3

3 {1, 2, 3} 1


This table shows that the set {1, 2, 3} has 1 + 3 + 3 + 1 = 8 subsets in all. 

Exercise 1.12 List all the subsets of the set {1, 2, 3, 4} in a similar

table.


We have seen that a set with 3 elements has 8 subsets and a set with 4 
elements has 16 subsets. This suggests that a set with n elements has 2n 

subsets. To see this, we can argue as follows. Given a set A with n 
elements, we can associate with each subset of A a string  of  n symbols, 
where the kth symbol is a 1 if the kth element of A is in the subset, and a 
0 otherwise. For example, if A = {1, 2, 3, 4, 5}, then the string associated 
with the subset {2, 4, 5} is 01011. There are 2n such strings (since there 
are 2 choices for each of the n symbols), so there are 2n subsets. 

We now concentrate on the following related question. 

How many subsets with k elements has a set with n elements? 

To answer this question, we consider choosing the k elements of the subset 
in order. There are n choices for the first element of the subset, then n − 1 
choices for the second element, and so on, with n − (k − 1) = n − k + 1  
choices for the kth element. Hence the number of ways of choosing k 
elements in order from n elements is 

n × (n − 1) × · · · × (n − k + 1). 

But some of these n × (n − 1) × · · · × (n − k + 1)  ordered choices give rise 
to the same subset. In fact, each subset of k elements corresponds to k! 
ordered choices of k elements. Thus the number of different subsets with k 
elements of a set with n elements is 

n × (n − 1) × · · · × (n − k + 1)  
. 

k! 
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Multiplying the numerator and denominator by (n − k)!, we obtain 

n! 
k! (n − k)! 

. 

We introduce the following notation for this expression. 

Definition For any non-negative integers n and k with k ≤ n, ( 
n 

) 
n! 

= .
k k! (n − k)! 

This expression is called a binomial coefficient.  It is the  number  of  
subsets with k elements of a set with n elements. 

For example, the number of subsets with two elements of a set with three 
elements is 

3 3! 
= = 3,2 2! 1! 

as we found in the table on page 14. 

Section 1 Sets 

nThe expression 
k is read as 

‘n choose k’. Some texts use the 
alternative notation nCk, where  
the ‘C’ stands for ‘combination’. 
The reason for the name 
‘binomial coefficient’ will 
become clear in Section 4. 

A more interesting example is that of a lottery in which participants choose 
a subset of six numbers from a set of 49 numbers. In this case there are 

49 49! 49 × 48 × 47 × 46 × 45 × 44 
= = = 13 983 816 We  can of course drop  the ‘×1’6 6! 43! 6 × 5 × 4 × 3 × 2 × 1 in the denominator and write 

different subsets, or combinations as they are commonly called. 49 × 48 × 47 × 46 × 45 × 44 
. ( ) ( ) ( ) 6 × 5 × 4 × 3 × 2 

10 10 11
Exercise 1.13 Evaluate 2 

, 3 
and , and verify that 3 

10 10 11+2 3 = 3 
. 

The result of Exercise 1.13 is a special case of the following general result. 

Example 1.5 Prove that that if n and k are positive integers with 
1 ≤ k ≤ n, then  

n n n + 1  = We use this identity in Section 4. 
k − 1 + 

k k
. 

Solution We start with the left-hand side and use successive 
rearrangements to obtain the right-hand side: 

n n n! n! 
+ = + 

k − 1 k (k − 1)! (n − (k − 1))! k! (n − k)!


kn! (n − k + 1)n!

= + 

k(k − 1)!(n − k + 1)!  k!(n − k)!(n − k + 1)  

kn! (n − k + 1)n! 
= + 

k!(n − k + 1)!  k!(n − k + 1)!  

(k + (n − k + 1))  × n! 
= 

k! (n − k + 1)! 


(n + 1)  × n!

= 

k! (n − k + 1)!  

(n + 1)!  
= 

n + 1  = . 
k! (n + 1  − k)! k 
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We can give an alternative proof of the above identity by interpreting the 
left- and right-hand sides as the results obtained by counting the same 
thing in two different ways. If we deem one of n + 1 elements to be the 

n + 1first, then the subsets of k elements chosen from these n + 1  
k 

elements consist of n subsets which include the first element (and 
k − 1 

k − 1 other elements), and 
n subsets which do not include the first 
k 

element. 

Such a combinatorial or counting argument can be spotted only with 
practice. 

Exercise 1.14 Prove the following identity (a) directly, (b) by using a 
combinatorial argument. 

If n and ) k are positive integers with 0 ≤ k ≤ n, then  
n n = . 

n − k k 

1.6 Set operations 
Consider the two sets {2, 3, 5} and {1, 2, 5, 8}. Using these sets, we can 
construct several new sets—for example: 
•	 the set {1, 2, 3, 5, 8} consisting of all elements belonging to at least one 

of the two sets; 
•	 the set {2, 5} consisting of all elements belonging to both of the two 

sets; 
•	 the set {3} consisting of all elements belonging to the first set but not 

the second, and the set {1, 8} consisting of all elements belonging to 
the second set but not the first. 

Each of these new sets is a particular instance of a general construction for 
sets. We now consider them in turn. 

Union 
We saw above that if A = {2, 3, 5} and B = {1, 2, 5, 8}, then the set of all 
elements belonging to at least one of the sets A and B is {1, 2, 3, 5, 8}. We  
call this set the union of A and B. 

More generally, we adopt the following definition. 

Definition Let A and B be any two sets; then the union of A and 
B is the set 

A ∪ B = {x : x ∈ A or x ∈ B}. 

Note that the word or in this definition is used in the inclusive sense of 
‘and/or’; that is, the set A ∪ B consists of the elements of A and the 
elements of B, including the elements in both A and B. 

n + 1 elements 

∗ | ∗ ∗ ∗ ∗ · · · ∗ 

↑ n elements 
first element 

In everyday language, an 
example of ‘or’ used in the 
exclusive sense is ‘Tea or 
coffee?’, since the answer ‘Both, 
please!’ is not expected. An 
example of ‘or’ used in the 
inclusive sense is ‘Milk or 
sugar?’, since in this case you 
could answer ‘Both’. 
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Example 1.6 

(a)	 Simplify [−2, 4] ∪ (0, 10). √ 
(b)	 Express the domain of the function f(x) =  x2 − 1 as a union of 

intervals. 

Solution 

(a)	 The union is the interval [−2, 10). 

(b)	 The domain consists of all real numbers x for which x2 − 1 ≥ 0: that 
is, x2 ≥ 1, so x ≥ 1 or  x ≤ −1. Thus the domain of f is the set 

{x ∈ R : x ≤ −1 or  x ≥ 1}. 
This is the set of numbers belonging either to the interval (−∞,−1] or 
to the interval [1,∞), and it can therefore be written as 

(−∞,−1] ∪ [1,∞). 

Exercise 1.15 

(a) Simplify (1, 7) ∪ [4, 11]. √ 
(b) Express the domain of the function f(x) = 1/ x2 − 9 as a union 

of intervals. 

(c) Draw a diagram depicting the union of the half-plane

H = {(x, y) ∈ R2 : y <  0} and the disc

D = {(x, y) ∈ R2 : x2 + y2 ≤ 4}.


So far we have defined the union of two sets. We can give a similar 
definition for the union of any number of sets; for example, the union of 
three sets A, B and C is the set 

A ∪ B ∪ C = {x : x ∈ A or x ∈ B or x ∈ C}. 

Intersection 
We saw above that if A = {2, 3, 5} and B = {1, 2, 5, 8}, then the set of all 
elements belonging to both of the sets A and B is {2, 5}. We  call  this  set  
the intersection of A and B. 

More generally, we adopt the following definition. 

Definition Let A and B be any two sets; then the intersection of 
A and B is the set 

A ∩ B = {x : x ∈ A and x ∈ B}. 

Two sets with no element in common, such as {1, 3, 5} and {2, 9}, are  said  
to be disjoint. We write {1, 3, 5} ∩ {2, 9} = ∅. 

Example 1.7 

(a)	 Simplify [−2, 4] ∩ (0, 10). √ √ 
(b)	 Express the domain of the function f(x) = 1/ 4 − x2 + 1/ 9 − x2 as 

an intersection of intervals, and simplify your answer. 

17 
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Solution 

(a)	 The intersection is the interval (0, 4]. 

(b)	 The domain consists of all real numbers x for which both 4 − x2 > 0 
and 9 − x2 > 0; that is, x2 < 4 and  x2 < 9. Thus the domain of f is 
the set of real numbers x that belong both to the interval (−2, 2) and 
to the interval (−3, 3). It can therefore be written as 

(−2, 2) ∩ (−3, 3); 

this is simply the interval (−2, 2). 

Exercise 1.16 

(a) Simplify (1, 7) ∩ [4, 11]. 

(b) Draw a diagram depicting the intersection of the half-plane

H = {(x, y) ∈ R2 : y <  0} and the disc

D = {(x, y) ∈ R2 : x2 + y2 ≤ 4}.


So far we have defined the intersection of two sets. We can give a similar 
definition for the intersection of any number of sets; for example, the 
intersection of three sets A, B and C is the set 

A ∩ B ∩ C = {x : x ∈ A and x ∈ B and x ∈ C}. 

Difference 
We saw above that if A = {2, 3, 5} and B = {1, 2, 5, 8}, then the set of all 
elements belonging to A but not to B is {3}; we  call this set  the  
difference A − B. Similarly, the set of all elements belonging to B but not 
to A is {1, 8}; this set is the difference B − A. 

More generally, we adopt the following definition. 

Definition Let A and B be any two sets; then the difference 
between A and B is the set 

A − B = {x : x ∈ A, x /∈ B}.	 Some texts denote the difference 
between A and B by A \ B. 

Remark Note that A − B is different from B − A, when  A �= B. Also,  for  
any set A, we have  A − A = ∅. 

Example 1.8 

(a)	 Simplify [−2, 4] − (0, 10) and (0, 10) − [−2, 4]. 

(b)	 Express the domain of the function f(x) = 1/(x2 − 1) as a difference 
between two sets. 

Solution 

(a)	 The difference [−2, 4] − (0, 10) is the interval [−2, 0], and the difference 
(0, 10) − [−2, 4] is (4, 10). 

(b)	 The domain consists of all real numbers x for which x2 − 1 �= 0;  that  
= 1  and  x �is, x � = −1. Thus the domain of f is the difference 

R − {1,−1}. 
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Exercise 1.17 

(a) Simplify (1, 7) − [4, 11] and [4, 11] − (1, 7). 

(b) Draw diagrams depicting H − D and D − H , where  H is the 
half-plane {(x, y) ∈ R2 : y <  0} and D is the disc 
{(x, y) ∈ R2 : x2 + y2 ≤ 4}. 

Further exercises 
Exercise 1.18 Which of the following statements are true? 

(a) 0 ∈ N (b) 0 ∈ Q (c) −0.6 /∈ R (d) 37 ∈ Z 

(e) 20 ∈ {4, 8, 12, 16} (f) {1, 2} ∈ {{2, 3}, {3, 1}, {2, 1}} 

(g)	 {0} ∈ ∅ 

Exercise 1.19 List the elements of the following sets. 

(a)	 {n : n ∈ N and 2 < n <  7} (b) {x ∈ R : x2 + 5x + 4  =  0} 

(c)	 {n ∈ N : n2 = 25} 

Exercise 1.20 Use set notation to specify each of the following sets: 

(a) the set of integers greater than −20 and less than −3; 

(b) the set of non-zero integers which are multiples of 3; 

(c)	 the set of all real numbers greater than 15. 

Exercise 1.21 Sketch the following sets in R2 . 

(a)	 {(x, y) ∈ R2 : y = 4  − 3x}
(b)	 {(x, y) ∈ R2 : (x + 1)2 + (y − 3)2 = 9}
(c)	 {(x, y) ∈ R2 : y2 = 8x} 

Exercise 1.22 Sketch the following sets in R2 . 

(a)	 {(x, y) ∈ R2 : y <  4 − 3x}
(b)	 {(x, y) ∈ R2 : (x + 1)2 + (y − 3)2 > 9}
(c)	 {(x, y) ∈ R2 : 0  ≤ x ≤ 2, 1 ≤ y ≤ 3} 

Exercise 1.23 For each of the sets A and B below, determine whether 
A ⊆ B. 

(a)	 A = {(0, 0), (0, 6), (−4, 6)} and 
B = {(x, y) ∈ R2 : (x + 2)2 + (y − 3)2 = 13}. 

(b)	 A = {(x, y) ∈ R2 : x2 + y2 < 4} and B = {(x, y) ∈ R2 : y <  4 − 8x}. 
2 2 

(c)	 A = {(2 cos t, 3 sin  t) :  t ∈ [0, 2π]} and B = {(x, y) ∈ R2 : 
x

+ 
y

= 1}.
4 9 

Exercise 1.24 Show that A is a proper subset of B, where  
2	 1A = {(x, y) ∈ R2 : x 2 + 4y < 1} and B = {(x, y) ∈ R2 : y <  2 }. 
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Exercise 1.25 For each of the sets A and B below, determine whether 
A = B. 

(a) A = {1, −1, 2} and B = {x ∈ R : x3 − 2x2 − x + 2  =  0}. 
(b) A = {(2 cos t, 3 sin  t) :  t ∈ [0, 2π]} and 

2 2 

B = {(x, y) ∈ R2 : 
x

+ 
y

= 1}.
4 9 

(c) A = {x ∈ R : x = 
p 
, where p, q ∈ N} and B = Q. 

q 

Exercise 1.26 For each of the sets A and B below, find A ∪ B, A ∩ B and 
A − B. 

(a) A = {0, 2, 4} and B = {4, 5, 6}. 
(b) A = (−5, 3] and B = [2, 17]. 

(c) A = {(x, y) ∈ R2 : x2 + y2 ≤ 1} and B = {(x, y) ∈ R2 : x2 + y2 ≤ 4}. 

2 Functions 

After working through this section, you should be able to: 

(a) determine the image of a given function; 
(b) determine whether a given function is one-one and/or onto; 
(c) find the inverse of a given one-one function; 
(d) find the composite of two given functions. 

2.1 What is a function? 
In the previous unit we concentrated on real functions—that is, functions 
whose domains and codomains are subsets of R. You can think of these 
functions as machines for processing real numbers. For example, the real 
function defined by f (x) =  1/x can be regarded as a machine that 

∗ of f can Recall from Subsection 1.1 that 

1 
3 −

comes −1 
2 R

calculates the reciprocals of non-zero real numbers. When 3 is fed into the 
machine, out comes the number ; when  2 is fed into the machine, out 

; and so on. Indeed, any real number in the domain 
∗be processed by the machine to produce a real number in the codomain.	 R denotes the set of non-zero 

real numbers, R − {0}. 

Now imagine a machine that accepts an element x from a set A (not 
necessarily a subset of R), and processes it to produce a unique element 
f (x) in  a  set  B (again not necessarily a subset of R). By dropping the 
requirement that the machine processes and produces real numbers, we 
obtain the following more general definition of a function. 
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